ebook img

Harmful Algal Blooms PDF

31 Pages·2012·5.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Harmful Algal Blooms

Scientific Analysis of The Harmful Algal Blooms and Hypoxia Research and Control Amendments Act of 2011         Co lumbia University, School of International and Public Affairs M aster of Public Administration in Environmental Science and Policy Workshop in Applied Earth Systems Management, Summer 2012 TEAM Erin Andreatta Mashael Fakhro Alona Gutman Parisa Mahdad Kim-Chi Nguyen Rosemarie Radford Sara Rummel Hannah Thornet Kimberly Rain Miner MANAGEMENT Justin Baliles Cozette Csoke FACULTY ADVISOR Matthew Palmer Cover page image credit: Chase Fountain, Texas Parks & Wildlife Workshop in Applied Earth Systems Management MPA in Environmental Science and Policy, Summer 2012 School of International and Public Affairs – The Earth Institute Columbia University   2 Executive  Summary              Harmful  algal  blooms  are  transient  increases  or  accumulations  of  algae  in  freshwater  and   marine   environments   that   cause   some   degree   of   negative   effect   to   aquatic   systems   or   human  health.  Blooms  are  natural  occurrences,  but  the  frequency  and  magnitude  of  these   events  is  increasing,  likely  due  to  human  influence.  Nutrients  discharged  from  sewage  and   industrial  outfalls  and  runoff  from  residential  and  agricultural  land  travel  through  river   systems,  eventually  reaching  fresh  or  marine  water  bodies.  A  proliferation  of  algal  biomass   occurs  when  the  enrichment  of  nitrogen,  phosphorous  and  other  nutrients  combines  with   appropriate  light,  temperature,  and  other  environmental  conditions.            Some  algae  naturally  produce  toxins.  Toxins  synthesized  and  released  by  harmful  algal   blooms  may  impact  human  health  via  the  consumption  of  contaminated  shellfish  or  from   direct  contact  with  algae.    Algae-­‐derived  neurotoxins  and  other  classes  of  harmful  toxins   have  been  recognized  as  a  potential  health  problem  in  both  coastal  and  inland  populations   for  millennia.          Algal  blooms  may  also  lead  to  ecosystem  and  health  damages  through  the  reduction  of   dissolved   oxygen   in   aquatic   systems.   When   algal   biomass   from   large   blooms   dies,   decomposition  depletes  the  dissolved  oxygen  and  may  cause  hypoxia,  or  reduced  oxygen   availability.  A  significant  drop  in  dissolved  oxygen  can  have  severe  consequences  for  many   aquatic  organisms,  and  can  result  in  fish  death  or  forced  migration.              The  combination  of  toxicity  and  hypoxia  resulting  from  algal  blooms  can  have  significant   impacts  on  coastal  ecosystems,  leading  to  fish  mortality  and  deleterious  effects  upon  birds   and  protected  marine  mammals  including  death  and  forced  migration.  Outbreaks  of  algal   blooms  have  become  an  increasing  problem  throughout  the  United  States,  including  the  Gulf   of  Maine  and  the  Gulf  of  Mexico.    Algal  blooms  negatively  impact  fisheries  and  coastal   tourism,  with  estimated  annual  costs  of  $82  million  per  year.  Cyanobacteria  in  freshwater   systems  form  high  biomass  blooms  and  may  produce  toxins,  and  have  impacted  human   health,  killed  aquatic  organisms  and  harmed  fishing  and  other  industries  in  the  United   States  and  worldwide.            In  1998,  the  Harmful  Algal  Blooms  and  Hypoxia  Research  and  Control  Act  was  enacted  to   support   research   on   HABs   and   hypoxia.   This   report   provides   a   scientific   analysis   of   proposed  amendments  to  this  legislation  that  call  for  a  national  action  plan  and  associated   regional  plans  to  improve  prevention,  control,  and  mitigation  of  algal  blooms.              Scientific   research   and   advances   in   technology   have   significantly   helped   in   understanding   the   causes   and   consequences   of   harmful   algal   blooms,   as   well   as   in   forecasting,  monitoring,  and  responding  to  outbreaks.  A  number  of  research  programs  focus   on   the   biology   and   ecology   behind   harmful   algal   blooms   and   hypoxia,   while   evolving   technology  aims  to  better  detect  and  predict  harmful  algal  blooms.  Various  methods  of   controlling  algal  blooms  need  further  testing  to  evaluate  the  potential  for  incidental  damage   to  the  affected  ecosystems. Table  of  Contents   Executive  Summary  .............................................................................................................................  3   Table  of  Contents  ..................................................................................................................................  4   1.0  Introduction  to  Harmful  Algal  Blooms  ..................................................................................  5   2.0  Problems  Associated  with  Harmful  Algal  Blooms  .............................................................  6   2.1  Algae  Toxicity  and  Potential  Health  Effects  ......................................................................................  7   2.2  Hypoxia  .............................................................................................................................................................  9   2.3  Additional  Adverse  Effects  ....................................................................................................................  11   2.4  Economic  Impacts  .....................................................................................................................................  11   2.5  Scientific  Challenges  .................................................................................................................................  12   3.0  Legislation  Related  to  Harmful  Algal  Blooms  ....................................................................  13   Case  Study  I:  The  “Dead  Zone”  in  the  Gulf  of  Mexico  .........................................................................  14   4.0  Solutions  to  Harmful  Algal  Blooms  .......................................................................................  15   4.1  Biological  and  Ecological  Research  ....................................................................................................  16   4.2  Predicting  and  Monitoring  Algal  Blooms  ........................................................................................  16   Programs  for  Prediction  and  Monitoring  ..........................................................................................  17   4.3  Prevention,  Control,  and  Mitigation  ..................................................................................................  19   Prevention  .......................................................................................................................................................  19   Sediment  Resuspension  ............................................................................................................................  22   Biological  Control  .........................................................................................................................................  23   5.0  Measuring  Success  ......................................................................................................................  23   Biological  and  Ecological  Research  ......................................................................................................  24   Predicting  Outbreaks  ..................................................................................................................................  24   Prevention,  Control  and  Mitigation  ......................................................................................................  25   Conclusion  ............................................................................................................................................  26   References  ............................................................................................................................................  27                 4 1.0  Introduction  to  Harmful  Algal  Blooms     Algae   are   a   diverse   group   of   simple   organisms   that   may   be   either   unicellular  or   multicellular  and  are  typically  autotrophs,  meaning  that  they  are  producers  for  aquatic   systems.  Most  perform  photosynthesis,  and  are  considered  "simple"  because  they  do  not   have   the   many   distinct   structures   and   organs   found   in   land   plants.   Algal   blooms   are   transient  increases  or  accumulations  of  algae  or  phytoplankton  in  freshwater  and  marine   environments,  sometimes  caused  by  an  influx  of  nutrients.  Eutrophication  is  the  process  by   which  nutrient  loads  of  nitrates  and  phosphates  wash  into  the  water  system.  These  high   nutrient  loads  can  often  be  traced  back  to  human  use  of  fertilizers  and  pesticides,  as  well  as   to   waste   discharges   from   animal   agriculture   (Larsson   et   al.   1985).   Other   sources   can   include  industrial  processes  and  municipal  waste  systems  that  may  produce  combined   sewer   overflow   during   rain   events   (Larsson   et   al.   1985;   Glibert   et   al.   2005).   Runoff   transports  these  nutrients  through  river  systems  and  eventually  to  marine  or  freshwater   systems  (Figure  1).         Figure  1.  Factors  influencing  the  growth  of  harmful  algal  blooms.       Image:  Adapted  from  Michigan  Sea  Grant     Some  algal  blooms  are  harmless,  while  others  can  damage  aquatic  organisms  chemically  or   physically  (Glibert  et  al.  2005).  Harmful  Algal  Blooms  (hereafter  HABs)  are  the  result  of  a   proliferation  of  occasionally  toxic  phytoplankton  that  may  produce  hypoxic  conditions,   5 resulting   in   harmful   impacts   on   aquatic   ecosystems,   coastal   communities,   and   human   health.  Hypoxia  is  a  condition  of  low  dissolved  oxygen  in  aquatic  systems  that  may  lead  to   the  death  of  aquatic  organisms  and  often  occurs  after  a  bloom  of  particularly  high  biomass.     Red   tides   are   a   particular   kind   of   harmful   bloom,   which   occur   when   a   type   of   red-­‐ pigmented   dinoflagellate   accumulates   and   tints   the   water   red   (Anderson   et   al.   2002).   However,  algal  blooms  can  also  be  green,  brown,  or  yellow,  depending  on  the  type  of  algae   (Glibert  et  al.  2005).     Globally,  algal  blooms  occur  primarily  in  Europe,  eastern  Asia,  and  North  America  (Figure   2).  Occurrences  of  HABs  and  hypoxia  have  increased  in  frequency  over  the  past  forty  years   in  the  United  States,  including  on  the  southeastern  and  northwestern  coastlines  and  the   Gulfs  of  Maine  and  Alaska  (Anderson  et  al.  2012).  Particularly  alarming,  the  northern  Gulf   of  Mexico  has  suffered  from  a  7,000  square  mile  stretch  of  hypoxia,  a  case  study  that  we   will  examine  in  detail.    In  this  report,  we  will  explore  the  problems  posed  by  HABs  and  will   consider  legislative  and  scientific  solutions  to  prevent  them  and  mitigate  their  impact.         Figure  2:  The  global  distribution  of  Dead  Zones  around  the  World.  Image:  Resiliance  Alliance   2.0  Problems  Associated  with  Harmful  Algal  Blooms     There  are  two  main  problems  related  to  the  proliferation  of  HABs  in  aquatic  systems.  First,   some  algal  blooms  have  a  direct  impact  on  human  health  because  numerous  species  of   algae  naturally  produce  toxic  compounds  (Backer  and  McGillicuddy  2006).  Humans  can  be   exposed   to   the   algal   toxins   by   eating   contaminated   shellfish   and   fish   or   accidentally   6 consuming  affected  water  during  recreational  activities  (Graham  2007).  Second,  a  series  of   events  related  to  HABs  may  result  in  reduced  levels  of  dissolved  oxygen,  or  hypoxia,  in  a   body  of  water,  which  may  be  detrimental  to  fish  and  other  organisms.  The  most  harmful   freshwater  HABs  are  caused  by  blue-­‐green  algae,  also  known  as  cyanobacteria,  both  due  to   hypoxic  conditions  and  toxic  emissions  (Hudnell  2008).  Certain  blue-­‐green  algae  form  high   biomass   blooms   and   may   produce   toxins   that   have   impacted   human   health   and   perpetuated  adverse  ecosystem  and  economic  impacts,  in  the  United  States  and  worldwide   (Hudnell  2008).     2.1 Algae Toxicity and Potential Health Effects   Various  species  of  algae  are  harmful  because  they  naturally  produce  toxins  (Backer  and   McGillicuddy  2006).  These  toxins  may  be  harmful  to  the  fish  and  mollusks  that  consume   them,  but  they  may  also  have  no  adverse  effects  on  these  primary  consumers,  instead   affecting  their  predators,  the  secondary  consumers  (Dawson  and  Holmes  1999).  Toxins  are   synthesized  inside  the  algal  cells,  but  some  toxins  pass  into  the  environment  outside  the   algal  cell  as  well  (Pierce  et  al.  2003).  Dinoflagellate  blooms  may  be  toxic  either  because   they  affect  ion  channels  or  because  they  inhibit  protein  function  in  humans  (Bigelow  2009).   Some  algae-­‐derived  toxins  bind  to  these  ion  channels,  blocking  ions  from  flowing  into  cells.   Other  toxins  have  the  opposite  effect:  they  bind  to  these  channels,  keeping  them  open  and   promoting  higher-­‐than-­‐normal  ion  flux  (Bigelow  2009).    In  both  cases,  normal  cell  function   is  disrupted,  resulting  in  neurological  damage  or  other  health  effects.     Toxins  are  transferred  though  the  trophic  system,  leading  to  bioaccumulation  in  larger   aquatic  animals.  Bioaccumulation  happens  when  compounds  accumulate  in  an  organism  at   a  rate  faster  than  they  can  be  broken  down  (Bigelow  2009).  Marine  invertebrates,  as  well   as   fish   and   shellfish,   typically   consume   algae,   including   toxic   algae.   As   fish   and   other   organisms  eat  algae,  they  ingest  toxins,  which  accumulate  in  their  tissues.  This  buildup  of   toxins  may  affect  consumers  higher  in  the  food  chain  such  as  predatory  fish  and  whales,   which  consume  many  fish  and  shellfish  and  their  associated  toxin  loads.  When  humans   consume  contaminated  fish  or  shellfish  from  any  point  along  this  food  chain,  the  effects  can   range  from  mild  symptoms  to  severe  illnesses  and  death  (Table  1).       Human  health  syndromes  caused  by  toxic  algae     Humans  can  be  exposed  to  the  algal  toxins  by  eating  contaminated  shellfish  or  fish,  or   accidentally  consuming  affected  water  (Graham  2007).  There  are  several  types  of  shellfish   poisoning  worldwide,  but  there  are  three  types  that  are  of  major  concern  in  the  United   States  (Table  1).               7 Table  1.  Summary  of  the  health  effects  of  various  shellfish  toxins.     Human Illness Toxin Plankton Process Amnesic Shellfish Domoic Acids Diatom Acts on calcium channels; Poisoning Gastrointestinal Short-term memory loss Diarrheic Shellfish Okadaic Acids, Dinoflagellate Inhibit proteins; Poisoning Pectenotoxin, Gastrointestinal Yessotoxin, Dinophysistoxin Neurotoxic Shellfish Brevetoxin Dinoflagellate Acts on calcium channels; Poisoning Gastrointestinal, tingling Paralytic Shellfish Saxitoxin Dinoflagellate Acts on ion channels; Poisoning Respiratory failure, death     Amnesic  Shellfish  Poisoning   Amnesic   shellfish   poisoning   is   caused   by   domoic   acid,   which   is   generated   by   certain   diatoms  in  the  genus  Pseudo-­‐nitzschia.  Domoic  acid  is  a  heterocyclic  amino  acid  similar  in   structure  to  kainic  acid,  which  communicates  messages  between  neurons  in  the  central   nervous  system  (Bates  et  al.  1989).  However,  domoic  acid  overstimulates  the  neurons  in   the  brain's  hippocampus  until  these  cells  start  to  die.  Domoic  acid  also  keeps  the  calcium   channels  open  in  nerve  and  muscle  cells,  where  the  uncontrolled  increase  of  calcium  causes   the  cell  to  degenerate  (Bigelow  2009).  Because  the  hippocampus  may  be  severely  damaged,   such  poisoning  can  result  in  permanent  short-­‐term  memory  loss,  brain  damage,  and  death. Pseudo-­‐nitzschia  is  usually  found  on  the  northwestern  and  eastern  North  American  coasts   and  by  the  Gulf  of  Mexico  (See  Case  Study  I;  Boesch  et  al.  1997).       In  1987,  amnesic  shellfish  poisoning  triggered  over  a  hundred  cases  of  human  infection  and   several  deaths  due  to  the  consumption  of  affected  mussels  from  the  Atlantic  Ocean  near   Canada  (Bates  et  al.  1989;  Anderson  et  al.  2012).  The  news  about  massive  HAB  outbreaks   motivated  people  to  become  aware  of  shellfish  poisoning  and  avoid  seafood  during  HAB   events  (Anderson  et  al.  2000;  Anderson  2007).     Diarrhetic  Shellfish  Poisoning   Diarrhetic  shellfish  poisoning  is  primarily  caused  by  okadaic  acids,  which  are  produced  by   the  dinoflagellate  Prorocentrum  lima  and  species  of  the  genus  Dinophysis  (Stewart  2005).     This   acid   inhibits   intestinal   cellular   de-­‐phosphorylation,   causing   cells   to   become   very   permeable  to  water  and  resulting  in  profuse  diarrhea  with  a  risk  of  dehydration.  However,   life-­‐threatening  symptoms  generally  do  not  result.  Diarrhetic  shellfish  poisoning  and  its   symptoms  usually  set  in  within  about  half  an  hour  of  ingesting  infected  shellfish,  and  last   8 for  about  one  day  (Dawson  and  Holmes  1999).  Cases  have  been  reported  worldwide,   beginning  in  the  1960s  (WHOI  2012). Neurotoxic  Shellfish  Poisoning   The  dinoflagellate  Gymnodinium  breve  produces  brevetoxins  that  cause  neurotoxic  shellfish   poisoning  (Watkins  et  al.  2008).  Symptoms  in  humans  include  vomiting  and  nausea  and  a   variety  of  neurological  symptoms  such  as  slurred  speech  (Watkins  et  al.  2008).  Continuous   exposure  to  airborne  brevetoxins  aerosolized  by  waves  can  lead  to  severe  respiratory   symptoms  (Backer  and  McGillicuddy  2006).  These  dinoflagellates  predominantly  occur  on   the  coastline  of  the  Gulf  of  Mexico  (See  Case  Study  I).  No  fatalities  have  occurred  as  a  result   of  neurotoxic  shellfish  poisoning,  but   there   have   been   several   cases   of   hospitalization   (Watkins  et  al.  2008).   Paralytic  Shellfish  Poisoning   The  algal  blooms  that  trigger  paralytic  shellfish  poisoning  are  created  by  several  species  of   dinoflagellates  that  belong  to  the  genus  Alexandrium  and  release  saxitoxins  (Zingone  and   Enevoldsen  2000).  The  positive  charge  on  part  of  the  saxitoxin  molecule  allows  it  bind  to   and  block  the  sodium  channel,  inhibiting  the  passage  of  sodium  ions  and  causing  muscles  to   relax.    This  may  lead  to  respiratory  failure  or  death  (Bigelow  2009).  These  dinoflagellates   occur  in  northern  California,  the  Pacific  Northwest,  Alaska,  and  New  England.   2.2 Hypoxia   When   large   pools   of   algal   biomass   created   in   these   blooms   die   and   decompose,   the   decomposition  process  depletes  the  dissolved  oxygen  in  the  water  and  causes  hypoxia   (Figure  3).  The  lack  of  oxygen  leads  to  the  death  of  many  organisms  in  the  area,  causing   these  water  areas  to  be  labeled  “dead  zones”  (Anderson  et  al.  2002).  Hypoxia  may  also  lead   to  the  mortality  of  marine  mammals,  birds,  and  reptiles  (Graham  2007).  HABs  are  usually   short-­‐lived,  from  days  to  months;  however,  their  effects  on  water  quality  and  habitat-­‐ degradation  can  become  ongoing  problems,  impacting  the  ecosystem  for  several  years  or   longer  (Paerl  et  al.  2001).             9 Figure  3.  The  processes  and  spatial  structure  of  stresses  to  marine  ecosystems  caused  by  harmful  algal   blooms.    Image:  Adapted  from  Mother  Nature  Network     Formation  of  Hypoxic  Zones   There  are  several  steps  involved  in  the  formation  of  a  hypoxic  zone.  Blooms  often  begin   with  the  addition  of  excess  nutrients  to  an  aquatic  system  (Anderson  et  al.  2002).    These   often  come  from  come  from  agriculture  and  urban  runoff  within  the  watershed,  though   they  may  occur  naturally  as  well  (Glibert  et  al.  2010).  As  a  result,  algae  are  fertilized  and   flourish,  producing  a  period  of  algal  bloom.    These  algae  then  die,  sink  down  the  water   column,  and  are  decomposed  by  bacteria.  These  bacteria  respire  as  they  decompose  the   phytoplankton,  consuming  dissolved  oxygen  in  the  process.  Hypoxia,  a  condition  of  water   with  low  dissolved  oxygen,  occurs  as  a  result.       Stratification  may  intensify  this  effect;  in  summer  months,  fresh  water  that  is  less  dense   flows  into  the  water  body  from  rivers,  and  continually  covers  the  dense  salty  water.    This   creates  a  barrier  between  the  water  masses  that  prevents  oxygenated  surface  water  from   mixing  with  the  deeper,  oxygen-­‐depleted  waters  (Zingone  and  Enevoldsen  2000).     Ecosystem  Effects  from  Hypoxia   Hypoxia   affects   ecosystems   in   several   ways.   When   facing   hypoxic   conditions,   mobile   invertebrates  and  fish  may  migrate  away  from  hypoxic  zones  to  areas  with  sufficient  levels   10

Description:
Harmful algal blooms are transient increases or accumulations of algae in .. permeable to water and resulting in profuse diarrhea with a risk of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.