ebook img

Hardy Martingales: Stochastic Holomorphy, L^1-Embeddings, and Isomorphic Invariants PDF

516 Pages·2022·9.259 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hardy Martingales: Stochastic Holomorphy, L^1-Embeddings, and Isomorphic Invariants

HardyMartingales ThisbookpresentstheprobabilisticmethodsaroundHardymartingalesforanaudience interestedinapplicationstocomplex,harmonic,andfunctionalanalysis.Buildingon theworkofBourgain,Garling,Jones,Maurey,Pisier,andVaropoulos,itdiscussesin detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, andHardymartingalesontheinfinitetorusproduct,andnumerousdeepapplicationsto ∞ the geometry and classification of complex Banach spaces, e.g., the SL estimates for Doob’s projection operator, the embedding of L1 into L1/H1, the isomorphic classificationtheoremforthepolydiskalgebras,ortherealvariablescharacterizationof BanachspaceswiththeanalyticRadonNikodymproperty.Duetotheinclusionofkey backgroundmaterialonstochasticanalysisandBanachspacetheory,it’ssuitablefora widespectrumofresearchersandgraduatestudentsworkinginclassicalandfunctional analysis. Paul F.X. Mu¨ller isProfessoratJohannesKeplerUniversityLinz,Austria.He istheauthorofmorethan50papersincomplex,harmonicandfunctionalanalysis,and ofthemonographIsomorphismsbetweenH1spaces(Springer,2005). Published online by Cambridge University Press NEW MATHEMATICAL MONOGRAPHS EditorialBoard JeanBertoin,Be´laBolloba´s,WilliamFulton,BrynaKra,IekeMoerdijk, CherylPraeger,PeterSarnak,BarrySimon,BurtTotaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversity Press.Foracompleteserieslistingvisitwww.cambridge.org/mathematics. 1. M.CabanesandM.EnguehardRepresentationTheoryofFiniteReductiveGroups 2. J.B.GarnettandD.E.MarshallHarmonicMeasure 3. P.CohnFreeIdealRingsandLocalizationinGeneralRings 4. E.BombieriandW.GublerHeightsinDiophantineGeometry 5. Y.J.IoninandM.S.ShrikhandeCombinatoricsofSymmetricDesigns 6. S.Berhanu,P.D.CordaroandJ.HounieAnIntroductiontoInvolutiveStructures 7. A.ShlapentokhHilbert’sTenthProblem 8. G.MichlerTheoryofFiniteSimpleGroupsI 9. A.BakerandG.Wu¨stholzLogarithmicFormsandDiophantineGeometry 10. P.KronheimerandT.MrowkaMonopolesandThree-Manifolds 11. B.Bekka,P.delaHarpeandA.ValetteKazhdan’sProperty(T) 12. J.NeisendorferAlgebraicMethodsinUnstableHomotopyTheory 13. M.GrandisDirectedAlgebraicTopology 14. G.MichlerTheoryofFiniteSimpleGroupsII 15. R.SchertzComplexMultiplication 16. S.BlochLecturesonAlgebraicCycles(2ndEdition) 17. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups 18. T.DownarowiczEntropyinDynamicalSystems 19. C.SimpsonHomotopyTheoryofHigherCategories 20. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesI 21. E.FricainandJ.MashreghiTheTheoryofH(b)SpacesII 22. J.Goubault-LarrecqNon-HausdorffTopologyandDomainTheory 23. J.S´niatyckiDifferentialGeometryofSingularSpacesandReductionofSymmetry 24. E.RiehlCategoricalHomotopyTheory 25. B.A.MunsonandI.Volic´CubicalHomotopyTheory 26. B.Conrad,O.GabberandG.PrasadPseudo-reductiveGroups(2ndEdition) 27. J.Heinonen,P.Koskela,N.ShanmugalingamandJ.T.TysonSobolevSpacesonMetric MeasureSpaces 28. Y.-G.OhSymplecticTopologyandFloerHomologyI 29. Y.-G.OhSymplecticTopologyandFloerHomologyII 30. A.BobrowskiConvergenceofOne-ParameterOperatorSemigroups 31. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryI 32. J.-H.EvertseandK.Gyo˝ryDiscriminantEquationsinDiophantineNumberTheory 33. G.FriedmanSingularIntersectionHomology 34. S.SchwedeGlobalHomotopyTheory 35. M.Dickmann,N.SchwartzandM.TresslSpectralSpaces 36. A.BaernsteinIISymmetrizationinAnalysis 37. A.Defant,D.Garc´ıa,M.MaestreandP.Sevilla-PerisDirichletSeriesandHolomorphic FunctionsinHighDimensions 38. N.Th.VaropoulosPotentialTheoryandGeometryonLieGroups 39. D.ArnalandB.CurreyRepresentationsofSolvableLieGroups 40. M.A.Hill,M.J.HopkinsandD.C.RavenelEquivariantStableHomotopyTheoryandthe KervaireInvariantProblem 41. K.CostelloandO.GwilliamFactorizationAlgebrasinQuantumFieldTheoryII 42. S.KumarConformalBlocks,GeneralizedThetaFunctionsandtheVerlindeFormula Published online by Cambridge University Press Hardy Martingales Stochastic Holomorphy, L1-Embeddings, and Isomorphic Invariants PAUL F.X. MU¨ LLER JohannesKeplerUniversityLinz Published online by Cambridge University Press UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108838672 DOI:10.1017/9781108976015 ©PaulF.X.Mu¨ller2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-83867-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Published online by Cambridge University Press ToJoanna Published online by Cambridge University Press Published online by Cambridge University Press Contents Preface pageix Acknowledgments xv 1 StochasticHolomorphy 1 1.1 Preliminaries 1 1.2 HolomorphicMartingales 35 1.3 Extrapolation 50 1.4 StochasticHilbertTransforms 54 1.5 MartingaleEmbeddingandProjection 58 1.6 ProjectingHolomorphicMartingales 60 1.7 ApplicationstoHp(T) 66 1.8 ProjectingSquareFunctions 68 1.9 Notes 84 2 HardyMartingales 87 2.1 Bochner–LebesqueSpaces 87 2.2 MartingalesonTN 94 2.3 Examples 100 2.4 ClassesofMartingalesandProjections 109 2.5 BasicL1Estimates 125 2.6 Notes 134 3 EmbeddingL1inL1/H1 136 0 3.1 HardyMartingalesandDyadicPerturbations 136 3.2 TheQuotientSpaceL1(T)/H1(T) 156 0 3.3 Notes 171 4 EmbeddingL1inXorL1/X 172 4.1 RandomMeasuresRepresentingOperators 172 4.2 L1Embedding 205 4.3 Rosenthal’sL1-Theorem 225 vii Published online by Cambridge University Press viii Contents 4.4 ApproximationinL1 241 4.5 Talagrand’sExamples 258 4.6 Notes 272 5 IsomorphicInvariants 274 5.1 IsomorphicClassificationofPolydiskAlgebras 275 5.2 HardyMartingaleConvergenceaRNP 304 5.3 HardyMartingaleCotype 340 5.4 Unconditionality(aUMD) 356 5.5 Embedding 371 5.6 Interpolation 375 5.7 Notes 378 Appendix:RNP,UMD,andM-Cotype 381 6 OperatorsonLp(cid:0)L1(cid:1) 391 6.1 TheHilbertTransform 392 6.2 ReflexiveSubspacesofL1 407 6.3 Notes 425 7 FormativeExamples 427 7.1 L1QuotientsbyReflexiveSpaces 428 7.2 TheTraceClass 440 7.3 IteratedLp(Lq)Spaces 451 7.4 TheJamesTree 458 7.5 TheSpaceL1/H1 474 0 7.6 Notes 481 References 483 NotationIndex 497 SubjectIndex 498 Published online by Cambridge University Press Preface In this book we present probabilistic methods developed for applications to complexandfunctionalanalysis.Wewillstudy,indepth,spacesofmartingales thatreflectcharacteristicqualitiesofholomorphicfunctions;specifically, (i) thespaceofintegrableHardymartingales H1(cid:0)TN(cid:1)definedbyrestrictions onthesupportoftheirFouriercoefficients; (ii) the space of holomorphic random variables H1(Ω) on Wiener space, characterizedbytheirItoˆ-integralrepresentation. StochasticHolomorphy The interplay between (nonconstant) holomorphic functions f and complex Brownian motion (z) goes back to the work of Paul Le´vy who noted that t f(z) is the path of a complex Brownian motion (Le´vy, 1948). More pre- t cisely, f(z)isdistributionallyindistinguishablefromz where t β(t) (cid:90) t β(t)= f(cid:48)(zs)2ds. | | 0 Itoˆ and McKean (1965) presented a proof of Picard’s theorem (asserting that a nonconstant analytic function on C omits at most one value) by applying Le´vy’sresulttotheuniversalcoveringmapontoC 0,1 . \{ } Beingmorespecific,welet f: D CbeanalyticandboundedwhereD = → z C : z < 1 . We let τ denote the exit time of (z) from D. The process t { ∈ | | } (f(z):t<τ)maybeexpandedbyItoˆ integrals, t (cid:90) t f(zt)= f(cid:48)(zs)dzs, t<τ, (0.0.1) 0 and hence forms a Brownian martingale. Doob (1953) proved martingale convergence theorems, showing that lim f(z) exists almost surely, and t τ t → ix https://doi.org/10.1017/9781108976015.001 Published online by Cambridge University Press x Preface developed the tools (conditioned Brownian motion) by which martingale convergenceistransformedintoradiallimitssuchthat lim f(rζ) existsforalmostevery ζ T, r 1 ∈ → whereT= z C: z =1 .ThusFatou’stheoremandPrivalov’stheoremwere { ∈ | | } among the first results in complex analysis obtained by stochastic methods. ManyyearslaterBurkholderetal.(1971)showedthat E f(z ) CEsup f(z ), τ s | |≤ |(cid:60) | s<τ whichinturn,byDoob’sconditionedBrownianmotion,givesrisetothereal variablecharacterizationoftheHardyspaceH1(T). TheItoˆintegralrepresentation(0.0.1)providesthemodelforanintrinsically stochastic concept of holomorphy. We say that F : Ω C is a holomorphic t → martingaleonWienerspace(Ω,( ),P)ifthereexistsacomplex-valued,( ) t t F F adaptedprocess(X)satisfying t (cid:90) t F = F + X dz . t 0 s s 0 AholomorphicrandomvariableisjustthelimitF =lim F ofanequiinte- t t →∞ grableholomorphicmartingale. In applications to analysis, it is important that holomorphic martingales form a linear space and that they are stable under stopping times, pointwise multiplication, and composition with analytic functions. Varopoulos (1980, 1981) found a key to profound probabilistic methods in complex analysis by analyzingtheactionofDoob’sconditionalexpectationoperator, N(F)(cid:0)eiθ(cid:1)=E(cid:16)Fz =eiθ(cid:17), τ | on a holomorphic random variable F. It consists in linking the space of p-integrableholomorphicrandomvariablesHp(Ω)tothecorrespondingHardy spaceHp(T)bymeansofthecommutativediagram, Hp(T) Id (cid:47)(cid:47) H(cid:58)(cid:58) p(T) , M (cid:36)(cid:36) N Hp(Ω) whereMf = f(z ).Chapter1developscentralideasofstochasticholomorphy τ together with their applications to the Marcinkiewicz decomposition and to complex convexity estimates for Hp(T) and for the Banach space SL (T) of ∞ harmonicfunctionswithuniformlyboundedsquarefunctions. https://doi.org/10.1017/9781108976015.001 Published online by Cambridge University Press

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.