ebook img

Fundamentals of linear algebra and optimization PDF

923 Pages·2017·5.244 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of linear algebra and optimization

Fundamentals of Linear Algebra and Optimization Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] c Jean Gallier (cid:13) February 23, 2017 2 Figure 1: Cover page from Bourbaki, Fascicule VI, Livre II, Alg`ebre, 1962 3 Figure 2: Page 156 from Bourbaki, Fascicule VI, Livre II, Alg`ebre, 1962 4 Contents 1 Vector Spaces, Bases, Linear Maps 11 1.1 Motivations: Linear Combinations, Linear Independence, Rank . . . . . . . 11 1.2 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3 Linear Independence, Subspaces . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4 Bases of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5 Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2 Matrices and Linear Maps 45 2.1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2 Haar Basis Vectors and a Glimpse at Wavelets . . . . . . . . . . . . . . . . 61 2.3 The Effect of a Change of Bases on Matrices . . . . . . . . . . . . . . . . . 78 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 Direct Sums, Affine Maps, The Dual Space, Duality 83 3.1 Direct Products, Sums, and Direct Sums . . . . . . . . . . . . . . . . . . . . 83 3.2 Affine Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.3 The Dual Space E and Linear Forms . . . . . . . . . . . . . . . . . . . . . 100 (cid:3) 3.4 Hyperplanes and Linear Forms . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.5 Transpose of a Linear Map and of a Matrix . . . . . . . . . . . . . . . . . . 119 3.6 The Four Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . 126 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4 Gaussian Elimination, LU, Cholesky, Echelon Form 131 4.1 Motivating Example: Curve Interpolation . . . . . . . . . . . . . . . . . . . 131 4.2 Gaussian Elimination and LU-Factorization . . . . . . . . . . . . . . . . . . 135 4.3 Gaussian Elimination of Tridiagonal Matrices . . . . . . . . . . . . . . . . . 161 4.4 SPD Matrices and the Cholesky Decomposition . . . . . . . . . . . . . . . . 164 4.5 Reduced Row Echelon Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.6 Transvections and Dilatations . . . . . . . . . . . . . . . . . . . . . . . . . . 186 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 5 Determinants 193 5.1 Permutations, Signature of a Permutation . . . . . . . . . . . . . . . . . . . 193 5 6 CONTENTS 5.2 Alternating Multilinear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5.3 Definition of a Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.4 Inverse Matrices and Determinants . . . . . . . . . . . . . . . . . . . . . . . 208 5.5 Systems of Linear Equations and Determinants . . . . . . . . . . . . . . . . 211 5.6 Determinant of a Linear Map . . . . . . . . . . . . . . . . . . . . . . . . . . 212 5.7 The Cayley–Hamilton Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 213 5.8 Permanents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 5.10 Further Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 6 Vector Norms and Matrix Norms 223 6.1 Normed Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.2 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.3 Condition Numbers of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 242 6.4 An Application of Norms: Inconsistent Linear Systems . . . . . . . . . . . . 251 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7 Eigenvectors and Eigenvalues 255 7.1 Eigenvectors and Eigenvalues of a Linear Map . . . . . . . . . . . . . . . . . 255 7.2 Reduction to Upper Triangular Form . . . . . . . . . . . . . . . . . . . . . . 262 7.3 Location of Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 8 Iterative Methods for Solving Linear Systems 271 8.1 Convergence of Sequences of Vectors and Matrices . . . . . . . . . . . . . . 271 8.2 Convergence of Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . 274 8.3 Methods of Jacobi, Gauss-Seidel, and Relaxation . . . . . . . . . . . . . . . 276 8.4 Convergence of the Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 9 Euclidean Spaces 289 9.1 Inner Products, Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . 289 9.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 297 9.3 Linear Isometries (Orthogonal Transformations) . . . . . . . . . . . . . . . . 309 9.4 The Orthogonal Group, Orthogonal Matrices . . . . . . . . . . . . . . . . . 312 9.5 QR-Decomposition for Invertible Matrices . . . . . . . . . . . . . . . . . . . 314 9.6 Some Applications of Euclidean Geometry . . . . . . . . . . . . . . . . . . . 318 9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 10 QR-Decomposition for Arbitrary Matrices 321 10.1 Orthogonal Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 10.2 QR-Decomposition Using Householder Matrices . . . . . . . . . . . . . . . . 324 10.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 CONTENTS 7 11 Hermitian Spaces 331 11.1 Hermitian Spaces, Pre-Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . 331 11.2 Orthogonality, Duality, Adjoint of a Linear Map . . . . . . . . . . . . . . . 340 11.3 Linear Isometries (Also Called Unitary Transformations) . . . . . . . . . . . 345 11.4 The Unitary Group, Unitary Matrices . . . . . . . . . . . . . . . . . . . . . 347 11.5 Orthogonal Projections and Involutions . . . . . . . . . . . . . . . . . . . . 350 11.6 Dual Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 11.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 12 Spectral Theorems 359 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 12.2 Normal Linear Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 12.3 Self-Adjoint and Other Special Linear Maps . . . . . . . . . . . . . . . . . . 368 12.4 Normal and Other Special Matrices . . . . . . . . . . . . . . . . . . . . . . . 375 12.5 Conditioning of Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . 378 12.6 Rayleigh Ratios and the Courant-Fischer Theorem . . . . . . . . . . . . . . 381 12.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 13 Introduction to The Finite Elements Method 391 13.1 A One-Dimensional Problem: Bending of a Beam . . . . . . . . . . . . . . . 391 13.2 A Two-Dimensional Problem: An Elastic Membrane . . . . . . . . . . . . . 402 13.3 Time-Dependent Boundary Problems . . . . . . . . . . . . . . . . . . . . . . 405 14 Singular Value Decomposition and Polar Form 413 14.1 Singular Value Decomposition for Square Matrices . . . . . . . . . . . . . . 413 14.2 Singular Value Decomposition for Rectangular Matrices . . . . . . . . . . . 421 14.3 Ky Fan Norms and Schatten Norms . . . . . . . . . . . . . . . . . . . . . . 424 14.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 15 Applications of SVD and Pseudo-Inverses 427 15.1 Least Squares Problems and the Pseudo-Inverse . . . . . . . . . . . . . . . . 427 15.2 Properties of the Pseudo-Inverse . . . . . . . . . . . . . . . . . . . . . . . . 432 15.3 Data Compression and SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . 437 15.4 Principal Components Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . 438 15.5 Best Affine Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 15.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448 16 Annihilating Polynomials; Primary Decomposition 451 16.1 Annihilating Polynomials and the Minimal Polynomial . . . . . . . . . . . . 451 16.2 Minimal Polynomials of Diagonalizable Linear Maps . . . . . . . . . . . . . 457 16.3 The Primary Decomposition Theorem . . . . . . . . . . . . . . . . . . . . . 463 16.4 Nilpotent Linear Maps and Jordan Form . . . . . . . . . . . . . . . . . . . . 469 8 CONTENTS 17 Topology 475 17.1 Metric Spaces and Normed Vector Spaces . . . . . . . . . . . . . . . . . . . 475 17.2 Topological Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 17.3 Continuous Functions, Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 490 17.4 Continuous Linear and Multilinear Maps . . . . . . . . . . . . . . . . . . . . 497 17.5 The Contraction Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . 502 17.6 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 17.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 18 Differential Calculus 505 18.1 Directional Derivatives, Total Derivatives . . . . . . . . . . . . . . . . . . . 505 18.2 Jacobian Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 18.3 The Implicit and The Inverse Function Theorems . . . . . . . . . . . . . . . 526 18.4 Second-Order and Higher-Order Derivatives . . . . . . . . . . . . . . . . . . 530 18.5 Taylor’s Formula, Fa`a di Bruno’s Formula . . . . . . . . . . . . . . . . . . . 535 18.6 Futher Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 19 Quadratic Optimization Problems 541 19.1 Quadratic Optimization: The Positive Definite Case . . . . . . . . . . . . . 541 19.2 Quadratic Optimization: The General Case . . . . . . . . . . . . . . . . . . 549 19.3 Maximizing a Quadratic Function on the Unit Sphere . . . . . . . . . . . . 553 19.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 20 Schur Complements and Applications 561 20.1 Schur Complements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561 20.2 SPD Matrices and Schur Complements . . . . . . . . . . . . . . . . . . . . . 563 20.3 SP Semidefinite Matrices and Schur Complements . . . . . . . . . . . . . . 565 21 Convex Sets, Cones, -Polyhedra 567 H 21.1 What is Linear Programming? . . . . . . . . . . . . . . . . . . . . . . . . . 567 21.2 Affine Subsets, Convex Sets, Hyperplanes, Half-Spaces . . . . . . . . . . . . 569 21.3 Cones, Polyhedral Cones, and -Polyhedra . . . . . . . . . . . . . . . . . . 572 H 22 Linear Programs 579 22.1 Linear Programs, Feasible Solutions, Optimal Solutions . . . . . . . . . . . 579 22.2 Basic Feasible Solutions and Vertices . . . . . . . . . . . . . . . . . . . . . . 585 23 The Simplex Algorithm 593 23.1 The Idea Behind the Simplex Algorithm . . . . . . . . . . . . . . . . . . . . 593 23.2 The Simplex Algorithm in General . . . . . . . . . . . . . . . . . . . . . . . 602 23.3 How Perform a Pivoting Step Efficiently . . . . . . . . . . . . . . . . . . . . 609 23.4 The Simplex Algorithm Using Tableaux . . . . . . . . . . . . . . . . . . . . 612 CONTENTS 9 23.5 Computational Efficiency of the Simplex Method . . . . . . . . . . . . . . . 622 24 Linear Programming and Duality 625 24.1 Variants of the Farkas Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 625 24.2 The Duality Theorem in Linear Programming . . . . . . . . . . . . . . . . . 630 24.3 Complementary Slackness Conditions . . . . . . . . . . . . . . . . . . . . . 639 24.4 Duality for Linear Programs in Standard Form . . . . . . . . . . . . . . . . 640 24.5 The Dual Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 643 24.6 The Primal-Dual Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 649 25 Extrema of Real-Valued Functions 661 25.1 Local Extrema and Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . 661 25.2 Using Second Derivatives to Find Extrema . . . . . . . . . . . . . . . . . . . 671 25.3 Using Convexity to Find Extrema . . . . . . . . . . . . . . . . . . . . . . . 674 25.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684 26 Newton’s Method and Its Generalizations 685 26.1 Newton’s Method for Real Functions of a Real Argument . . . . . . . . . . 685 26.2 Generalizations of Newton’s Method . . . . . . . . . . . . . . . . . . . . . . 686 26.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692 27 Basics of Hilbert Spaces 693 27.1 The Projection Lemma, Duality . . . . . . . . . . . . . . . . . . . . . . . . 693 27.2 Farkas–Minkowski Lemma in Hilbert Spaces . . . . . . . . . . . . . . . . . . 710 28 General Results of Optimization Theory 713 28.1 Existence of Solutions of an Optimization Problem . . . . . . . . . . . . . . 713 28.2 Gradient Descent Methods for Unconstrained Problems . . . . . . . . . . . 727 28.3 Conjugate Gradient Methods for Unconstrained Problems . . . . . . . . . . 743 28.4 Gradient Projection for Constrained Optimization . . . . . . . . . . . . . . 753 28.5 Penalty Methods for Constrained Optimization . . . . . . . . . . . . . . . . 756 28.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 758 29 Introduction to Nonlinear Optimization 759 29.1 The Cone of Feasible Directions . . . . . . . . . . . . . . . . . . . . . . . . . 759 29.2 The Karush–Kuhn–Tucker Conditions . . . . . . . . . . . . . . . . . . . . . 772 29.3 Hard Margin Support Vector Machine . . . . . . . . . . . . . . . . . . . . . 784 29.4 Lagrangian Duality and Saddle Points . . . . . . . . . . . . . . . . . . . . . 794 29.5 Uzawa’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810 29.6 Handling Equality Constraints Explicitly . . . . . . . . . . . . . . . . . . . . 816 29.7 Conjugate Function and Legendre Dual Function . . . . . . . . . . . . . . . 823 29.8 Some Techniques to Obtain a More Useful Dual Program . . . . . . . . . . 833 29.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 842 10 CONTENTS 30 Soft Margin Support Vector Machines 845 30.1 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 846 s1 30.2 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 855 s2 30.3 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . 861 s2(cid:48) 30.4 Soft Margin SVM; (SVM ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 s3 30.5 Soft Margin Support Vector Machines; (SVM ) . . . . . . . . . . . . . . . . 878 s4 30.6 Soft Margin SVM; (SVM ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 s5 30.7 Summary and Comparison of the SVM Methods . . . . . . . . . . . . . . . 887 31 Total Orthogonal Families in Hilbert Spaces 899 31.1 Total Orthogonal Families, Fourier Coefficients . . . . . . . . . . . . . . . . 899 31.2 The Hilbert Space l2(K) and the Riesz-Fischer Theorem . . . . . . . . . . . 907 Bibliography 916

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.