ebook img

Functional Analysis in Mechanics PDF

315 Pages·2013·1.953 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Analysis in Mechanics

Springer Monographs in Mathematics Forfurther volumes: http://www.springer.com/series/3733 Leonid P. Lebedev • Iosif I. Vorovich Michael J. Cloud Functional Analysis in Mechanics Second Edition † Leonid P. Lebedev Iosif I. Vorovich Department of Mathematics Department of Mathematics & Mechanics National University of Colombia Rostov State University Bogotá, Colombia Rostov-on-Don, Russia Michael J. Cloud Department of Electrical Engineering Lawrence Technological University Southfield, MI, USA ISSN 1439-7382 ISBN 978-1-4614-5867-8 ISBN 978-1-4614-5868-5 (eBook) DOI 10.1007/978-1-4614-5868-5 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012950048 Mathematics Subject Classification (2010): 4601, 4602, 7401, 7402, 74B05, 74K25, 35JXX, 35A01, 35A02 © Springer Science+Business Media, LLC 2003, 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifics tatement,t hats uchn amesa ree xempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface InRussia,auniversityMechanicsdepartmentwilltypicallyexistwithina“Mathe- maticalFaculty.”Suchadepartmentisnotanengineeringdepartmentinthewestern sense,butissomethingintermediatebetweenamathematicsdepartmentandanen- gineeringdepartment.Itwilloffercoursesoncalculus,linearalgebra,analysis,dif- ferential geometry, differential equations, and so on, along with extensive courses onanalyticalmechanics,thestrengthofmaterials,continuummechanics,elasticity, fluidmechanics,andmorespecializedsubjects. Whenthefirstauthorofthisbookwasastudentofthesecondauthor,functional analysis was not in the curriculum for mechanicists. In 1971, Professor Vorovich offeredashortcourseonfunctionalanalysistoabroadaudienceconsistingofmath- ematiciansandmechanicists,studentsandprofessors.Itincludedasimpleandmin- imalintroductiontothetheoryofBanachandHilbertspacesthatopenedthedoorto understanding(withsomedifficultyonthepartofthenon-mathematicians)certain interesting applications in mechanics. The mathematicians were surprised at how abstracttheoremscouldbeappliedtomechanicsand,moreover,thatthesetheorems could actually be rooted inmechanics. Itwas emphasized thatstrainenergy isnot onlyaphysicalnotion,butameasurebywhichanormandinnerproductcanbeim- posedonthesetofdeformationsorvelocitiesofabody.Thisideawasdevelopedby Vorovichinhisdoctoraldissertationonthenonlineartheoryofelasticshallowshells in1957,butwasimbeddedinjustafewlongexamples.Manysubsequentpublica- tions of the idea were made in Doklady AN USSR, the central scientific journal of theUSSR,wheretheresultswerepresentedwithoutproof. Later, Professor Vorovich’s lectures were extended and became the basis for a regular course at Rostov State University and many other institutions across the USSR. The course contents, including the applications considered, continued to evolve,butthepresentbookpreservesthemainideasoftheoriginalcourse.Asthe coursewasjustonesemesterinlength,itcontainedonlyaminimalsubsetoftheab- stracttheorythatenabledstudentstounderstandtheapplications.Thefirsteditionof thisbookcontainedsomeabstractmaterialthatwasnotpresentedinthecourse.This secondeditionincludesmoreextendedcoverageoftheclassical,abstractportionsof functional analysis, as well as additional mechanics problems. Taken together, the v vi Preface firstthreechaptersnowconstitutearegulartextonappliedfunctionalanalysis.This potential use of the book is supported by a significantly extended set of exercises withhintsandsolutions. TheIntroduction(pages1–7)isanunnumberedchapterwithsingle-digitinternal numberingofitsequations,examples,andtheorems.Chapters1through4employa three-digitschemewherethefirsttwonumbersarethechapterandsectionnumbers (henceRemark1.3.2isthesecondlabeledremarkinSection1.3).TheIntroduction closeswithsomeadditionalremarksonnotation. Acknowledgments. We would like to thank Senior Editor Achi Dosanjh and As- sociateEditorDonnaChernyk forassistancewiththissecondedition.Wearealso grateful to Elena Vorovich and toour wives, Natasha Lebedeva and Beth Lannon- Cloud,fortheirunderstandingandsupport. Bogota,Colombia LeonidLebedev Okemos,Michigan, USA MichaelCloud August2012 Contents Introduction ....................................................... 1 1 Metric,Banach,andHilbertSpaces .............................. 9 1.1 Preliminaries .............................................. 9 1.2 Ho¨lder’sInequalityandMinkowski’sInequality................. 14 1.3 MetricSpacesofFunctions .................................. 18 1.4 SomeRelationsfortheMetricsinL˜p(Ω)and(cid:3)p ................. 22 1.5 MetricsinEnergySpaces.................................... 24 1.6 SetsinaMetricSpace....................................... 28 1.7 ConvergenceinaMetricSpace ............................... 29 1.8 Completeness.............................................. 30 1.9 CompletionTheorem ....................................... 31 1.10 LebesgueIntegralsandtheSpaceLp(Ω)........................ 34 1.11 BanachSpaces............................................. 39 1.12 Normsonn-DimensionalSpaces.............................. 42 1.13 OtherExamplesofBanachSpaces ............................ 44 1.14 HilbertSpaces ............................................. 48 1.15 FactorSpaces.............................................. 50 1.16 Separability ............................................... 53 1.17 Compactness,HausdorffCriterion............................. 58 1.18 Arzela`’sTheoremandItsApplications......................... 61 1.19 TheoryofApproximationinaNormedSpace ................... 66 1.20 DecompositionTheorem,RieszRepresentation ................. 70 1.21 LinearOperatorsandFunctionals ............................. 72 1.22 SpaceofLinearContinuousOperators ......................... 76 1.23 UniformBoundednessTheorem .............................. 79 1.24 Banach–SteinhausPrinciple.................................. 82 1.25 ClosedOperatorsandtheClosedGraphTheorem................ 83 1.26 InverseOperator ........................................... 89 1.27 Lax–MilgramTheorem...................................... 92 1.28 OpenMappingTheorem..................................... 93 vii viii Contents 1.29 DualSpaces ............................................... 94 1.30 Hahn–BanachTheorem ..................................... 98 1.31 ConsequencesoftheHahn–BanachTheorem ...................102 1.32 ContractionMappingPrinciple ...............................103 1.33 Topology,WeakandWeak*Topologies ........................109 1.34 WeakTopologyinaNormedSpaceX .........................111 1.35 ConclusionandFurtherReading ..............................113 2 MechanicsProblemsfromtheFunctionalAnalysisViewpoint .......115 2.1 IntroductiontoSobolevSpaces ...............................115 2.2 OperatorofImbedding ......................................119 2.3 SomeEnergySpaces........................................120 2.4 GeneralizedSolutionsinMechanics...........................135 2.5 ExistenceofEnergySolutionstoSomeMechanicsProblems ......141 2.6 OperatorFormulationofanEigenvalueProblem.................142 2.7 ProblemofElastico-Plasticity;SmallDeformations..............144 2.8 BasesandCompleteSystems;FourierSeries....................151 2.9 WeakConvergenceinaHilbertSpace .........................157 2.10 RitzandBubnov–GalerkinMethods...........................166 2.11 CurvilinearCoordinates,Nonhomogeneous BoundaryConditions .......................................168 2.12 Bramble–HilbertLemmaandItsApplications...................171 3 SomeSpectralProblemsofMechanics............................177 3.1 Introduction ...............................................177 3.2 AdjointOperator ...........................................178 3.3 CompactOperators .........................................185 3.4 CompactOperatorsinHilbertSpace...........................190 3.5 FunctionsTakingValuesinaBanachSpace ....................192 3.6 SpectrumofaLinearOperator................................195 3.7 ResolventSetofaClosedLinearOperator......................199 3.8 SpectrumofaCompactOperatorinHilbertSpace ...............201 3.9 AnalyticNatureoftheResolventofaCompactLinearOperator ...209 3.10 SpectrumofaHolomorphicCompactOperatorFunction..........211 3.11 Self-AdjointCompactLinearOperatorinHilbertSpace ..........213 3.12 SomeApplicationsofSpectralTheory .........................219 3.13 Courant’sMinimaxPrinciple.................................222 4 ElementsofNonlinearFunctionalAnalysis........................225 4.1 Fre´chetandGaˆteauxDerivatives..............................225 4.2 Liapunov–SchmidtMethod ..................................231 4.3 CriticalPointsofaFunctional ................................233 4.4 VonKa´rma´nEquationsofaPlate .............................236 4.5 BucklingofaThinElasticShell ..............................243 4.6 NonlinearEquilibriumProblemforanElasticShallowShell ......251 Contents ix 4.7 DegreeTheory.............................................255 4.8 Steady-StateFlowofaViscousLiquid.........................258 SummaryofInequalitiesandImbeddings .............................265 A.1 Inequalities................................................265 A.2 Imbeddings................................................268 HintsforSelectedProblems .........................................269 References.........................................................299 InMemoriam:IosifI.Vorovich ......................................301 Index .............................................................303

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.