ebook img

Full Text PDF

18 Pages·2016·4.16 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Full Text

FEMSMicrobiologyEcology,92,2016,fiw166 doi:10.1093/femsec/fiw166 AdvanceAccessPublicationDate:8August2016 Minireview MINIREVIEW Hydraulic fracturing offers view of microbial life in the D o w n lo deep terrestrial subsurface a d e d Paula J. Mouser1,∗, Mikayla Borton2, Thomas H. Darrah3, Angela Hartsock4 from h and Kelly C. Wrighton2 ttp s ://a c 1DepartmentofCivil,EnvironmentalandGeodeticEngineering,TheOhioStateUniversity,2070NeilAvenue, a d e 470HitchcockHall,Columbus,OH43210,USA,2DepartmentofMicrobiology,TheOhioStateUniversity,484 m ic West12thAvenue,Columbus,OH43210,USA,3DivisionsofSolidEarthDynamicsandWater,Climateandthe .o u p Environment,SchoolofEarthSciences,TheOhioStateUniversity,125SouthOvalMall,275MendenhallLab, .c o Columbus,OH43210,USAand4DepartmentofBiology,UniversityofAkron-WayneCollege,1901Smucker m Road,Orrville,OH44667,USA /fem s ∗Correspondingauthor:DepartmentofCivil,EnvironmentalandGeodeticEngineering,TheOhioStateUniversity,2070NeilAve,470HitchcockHall, ec /a COonleumsebnutesn,OceHs4u3m21m0,aUryS:AM.iTcerlo:b6i1a4l2c4o7m44m2u9;nEit-imesaiinl:[email protected],redoxandchemicaladditives. rticle Editor:GerardMuyzer -a b s tra c ABSTRACT t/92 /1 1 Horizontaldrillingandhydraulicfracturingareincreasinglyusedforrecoveringenergyresourcesinblackshalesacrossthe /fiw globe.Althoughnewlydrilledwellsareprovidingaccesstorocksandfluidsfromkilometerdepthstostudythedeep 1 6 biosphere,wehavemuchtolearnaboutmicrobialecologyofshalesbeforeandafter‘fracking’.Recentstudiesprovidea 6/2 frameworkforconsideringhowengineeringactivitiesalterthisrock-hostedecosystem.Wefirstprovidedataonthe 40 2 geochemicalenvironmentandmicrobialhabitabilityinpristineshales.Next,wesummarizedatashowingthesamepattern 9 1 acrossfracturedshales:diverseassemblagesofmicrobesareintroducedintothesubsurface,eventuallyconvergingtoalow 8 b diversity,halotolerant,bacterialandarchaealcommunity.Datawesynthesizedshowthattheshalemicrobialcommunity y g predictablyshiftsinresponsetotemporalchangesingeochemistry,favoringconservationofkeymicroorganisms ue s regardlessofinputs,shalelocationoroperators.Weidentifiedfactorsthatconstraindiversityintheshaleandinhibit t o biodegradationatthesurface,includingsalinity,biocides,substratesandredox.Continuedresearchinthisengineered n 0 ecosystemisrequiredtoassessadditivebiodegradability,quantifyinfrastructurebiocorrosion,treatwastewatersthat 9 A returntothesurfaceandpotentiallyenhanceenergyproductionthroughinsitumethanogenesis. p ril 2 Keywords:fracking;shale;Marcellus;halotolerantbacteria;naturalgas;methanogens 01 9 ANOVERVIEWOFBLACKSHALEGEOLOGY record (Tourtelot 1979; Wignall 1994). Black shale basins are ANDTHEHYDRAULICFRACTURINGPROCESS found across the globe, with the largest known reserves in China, North America, Russia, Argentina, Australia, Brazil, as Organic-richmudstones,commonlycalledblackshales,consti- well as several African and European countries (Fig. 1A). Al- tute∼35%ofallsedimentarydepositsmakingthemthemost though exploited for various purposes (e.g. reservoirs for car- abundant rock type preserved in the global sedimentary rock bonsequestration,targetsfornuclearwastestorageandsources Received:8April2016;Accepted:12July2016 (cid:4)C FEMS2016.Allrightsreserved.Forpermissions,pleasee-mail:[email protected] 1 2 FEMSMicrobiologyEcology,2016,Vol.92,No.11 D o w n lo a d e d fro m h ttp s ://a c (D) a d e m ic .o u p .c o m /fe m s e c /a rtic le -a b Figure1.(A)Globallocationsofblackshaleformationswithassessednaturalgasresourceestimates(gray)andformationsthathavenotyetbeenassessedfortheir s resourceestimates(brown);basemapmodifiedfromtheUSEnergyInformationServicesAssessedResourcesBasinMap,2013.Readersarereferredtoreferenced tra c microbialstudiesfromUSshalegasbasinssummarizedinTable1.(B)Thenaturalfracturenetworkand(C)acarbonate-mineralizedveinfromMarcellusshalecore; t/9 (D)backscatteredelectronimageofamechanicallypolishedsectionofUtica/PointPleasantshale,horizontalfieldwidth∼300μm.Organicmatterandporesaredark 2 /1 graytoblack,silicatesanddolomitearemediumgray,calciteislightgrayandpyriteiswhite;(E)secondaryelectronimageofadualbeamFocusedIonBeam/Scanning 1 ElectronMicroscopy(SEM)sliceofMarcellusShale,horizontalfieldwidth∼20μm.Organicmatterandporesaredarkgray,pyritemediumgrayandsilicates/carbonates /fiw lightgray.ImageacquiredattheMolecularFoundry,LawrenceBerkeleyNationalLaboratory(LBNL);(F)SEMimageofmicrobialcellsandotherparticulatescollected 1 6 ona0.2μmfilterfromMarcellusshaleflowbackfluids.SEMimagesacquiredattheSubsurfaceEnergyMaterialsCharacterizationandAnalysisLaboratory,Schoolof 6 EarthSciences,TheOhioStateUniversity. /24 0 2 9 for precious metals), interest in black shales for energy de- Phanerozoic,whichincludesthelateOrdovician,themiddleDe- 1 8 velopment has intensified over the last decade following the vonian,thelateCarboniferoustoearlyPermian,thelateJurassic b y widespreadapplicationoftwonewlycoupledtechnologies:hori- andthemiddleCretaceous(ArthurandSageman1994;Wignall g u zontaldrillingandhydraulicfracturing.These‘unconventional’ 1994;Ryderetal.1998;Sagemanetal.2003;Pollastro2007;Arthur es formation development methods have dramatically expanded et al. 2008; Martini et al. 2008; Straeten et al. 2011; Trabucho- t o n recoveryoftightlyboundhydrocarbonsfromlowpermeability Alexandre et al. 2012; Kerschke and Schulz 2013). During the 0 9 rockmatrices(Kerr2010;Touretal.2010).Asaresult,natural formationofblackshales,depositionoforganic-richmaterials A p gUaSsafnrodm6%blaocfkgslohbaalelsncauturrreanltglyasacpcrooudnutcstifoonr,mwoitrhepthearcnen30ta%geosf oincgcufrrroemduhnigdherpcroimndairtyiopnrsoodfulcotwiviotyxyogrenra(pWidigsneadllim19e9n4t)a,trieosnulitn- ril 2 0 expectedtogrowinthecomingdecades(EIA2013).Despitethe stagnantmarinesystems(Tourtelot1979;WignallandNewton 19 importanceofblackshalestohumankind,westillhaveasur- 2001).Stagnationandanoxiapromotedefficientorganiccarbon prisinglypoorunderstandingofthephysical,chemicalandbi- preservation(Tourtelot1979;Wignall1991a,b,1994),influencing ologicalprocesseswithinfracturedblackshalesandfluidsre- itsdarkgraytoblackappearance(Fig.1BandC)andgeochem- coveredfromtheseformations,especiallyascomparedtoother ical signature (Wignall 1994), with black shales having higher hydrocarbon-bearingformationssuchassandstonesandlime- carboncontentandtypicallymorereducedoxidationstatethan stones.Theseaspectswilldirectlyinfluencetheshalewell’smi- grayshales.Blackshaleshaveporositiescommonly<5%(Soeder crobialecosystemsaswellasthewastefluidstheyproduce. 1988;Onstottetal.1998;Curtis2002;RyderandZagorski2003; Blackshalesareorganic-richsedimentaryrocksdominated Lash2006;LashandBlood2007;Buchwalteretal.2015)andsmall by fine- to extremely fine-grained silt, clay and quartz grains pore-throatsizes(Fredricksonetal.1997),resultinginexceed- containingvariableamountsofcarbonates,organicmatterand inglylowpermeabilitiesinthenano-Darcyrange(Onstottetal. pyritization (Fig. 1B–E) (Tourtelot 1979; Wignall 1994). These 1998;Lashetal.2004;LashandBlood2007;Engelderetal.2009, shaleswerelargelyformedduringfivegeologicperiodsinthe 2012). Mouseretal. 3 D o w n lo a Figure2.(A)Typicalcrosssectionofahorizontal-drilledandhydraulicallyfracturedwellintheUSAppalachianBasinand(B)idealizedcartoonoffractureinfluencing d e biogeochemicalchangesafterfracturing,includingnaturalfracturesandveinsintheshale,zonesoforganicmatterandinjectedcompoundsincludingbiomass. d fro m Theageofblackshaleimpactsburialdepth,paleopasteur- widthofahumanhairandpropagatingthesefracturesseveral h izationtemperaturesandpressures,aswellasthetimeframe hundredmetersintotheformation(Fig.2B)(Arthuretal.2008; ttp s ffoacrtohrysdraofcfoarrdboanwdiedveelorapnmgeento.fTpoogteetnhteiar,l vhaarbiaittaiotsnsfoirnbtuhreiesde Kteirnagn2d01te0n).sFroafctthuoruinsganudsessoofnlitaevresroafgceh1e0m–1i5camlsil(l∼io1n%liotefrtsheoftowtaa-l ://ac a (indigenous)microorganisms,ormicrobesintroducedoverge- volume)duringthedevelopmentofonehorizontalproduction d e ologictime.Moreover,thedepthsoftheshaleformationscur- well(ClarkandVeil2009;Rush2010;Gregoryetal.2011;Nicot m ic rentlybeingconsideredforpetroleumdevelopmentrangefrom and Scanlon 2012; Olsson et al. 2013; Jackson et al. 2014; Ven- .o u less than 300 m to more than 4000 m below the surface with goshetal.2014).Fracturingfluidsarecomposedofwater,sandor p .c varying thicknesses (20–200 m) (Evans 1995; Ryder et al. 1998; proppants,acidandmanyorganicandinorganicchemicaladdi- o m Pollastro2007;Arthuretal.2008;Martinietal.2008;Langeetal. tivesthatcleanthewellbore,movetheproppantintonewlycre- /fe 2013;Olssonetal.2013),impactingcurrentinsitupressureand atedfissures,alterwettabilitybetweenthefluidandtheshale, m s temperatures, which are known constraints for microbial life protectthewellfromcloggingandcorrosionandlimitgrowthof e c (RothschildandMancinelli2001;PicardandDaniel2013).Black microorganismsdetrimentaltoproduction(Rush2010;Soeder /a shaleshavetotalorganiccarbon(TOC)contenttypicallyranging 2010;Gordallaetal.2013;Stringfellowetal.2014;Kekacsetal. rtic le from2%to9%,withvaluesashighas20%(Jenden,Drazanand 2015;ElsnerandHoelzer2016).Microbialactivityinoilandgas -a b Kaplan1993;ArthurandSageman1994;Wignall1994;Kerschke wellscancausenumerousproductionissuesrangingfromgas s andSchulz2013).Inadditiontothecarbonamount,thedistri- souring and biocorrosion to reduced efficacy of chemical ad- tra c butionandlabilityoforganicmaterialscanvarywidely(Fig.1D ditivesandfractureclogging.Understandingthediversityand t/9 2 andE)basedondepositionage,grainsizeanddiagenetichistory, functionofmicrobesinhabitingblackshalescanthereforepre- /1 1 withramificationsformicrobialmetabolismandgrowthrates servecapitalinvestments(e.g.wellinfrastructure)andimprove /fiw (Schlegeletal.2013;Wuchteretal.2013;Buchwalteretal.2015). theoveralleconomicsofenergyrecoveredfromthesesystems. 1 6 Thesetypesoflowpermeability,highcarboncontentrockfor- Thisreviewtakesabroadlookatmicrobiallifeinblackshales 6 mations are considered unconventional oil and gas reservoirs prior to and after hydraulic fracturing, building on a previous /24 0 becauserelativetosandstoneorlimestoneformationsthatcon- summaryofmicrobialdynamicsandcontrolinshalesystems 2 9 stituteconventionalreservoirs,hydrocarbonsareeitherphysi- byGasparandcolleagues(2014)withacomparativeanalysisof 18 callytrappedbythesmallporethroatsorfailtodiffuseoutof publicallyavailable16SrRNAsequencedatacollectedacrossge- b y theshalematrixateconomicallyrecoverablerates.Asaresult, ographicallydifferentshales,andincorporatingmorerecently g u hydrocarbonrecoveryfromblackshaleshasonlybecomefeasi- publishedinformationonthefunctionalpotentialofkeytaxa es blebycouplinghorizontaldrillingandhydraulicfracturingstim- generated from metagenomic data and shale isolate studies. t o n ulationtechnologies. Thisbodyofliteraturesuggeststhathydraulicfracturingintro- 0 9 Engineered phases in the development of a shale well in- ducesbiomassandcreatesnewgeochemicalconditionsinthe A p cshluadleetfhoremfoaltloiowninwgitphriimnsatrayllsatteipons:o(if)vmeurtlitcipalledrpirllointegcttoivaebcoavseinthges dbeetewpeteenrredsiftfreiarelnsutbsshuarlfeacfoertmhaattisounpsp.oGritvemnictrhoebinaalsccoelnontiizmatpiloen- ril 2 0 to safeguard sensitive aquifers and formations during drilling mentationofhydraulicfracturingandtheinaccessibilityofre- 19 activities, (ii) horizontal/lateral drilling within black shale to searcherstothesesites,moststudiestodateare16SrRNAgene lengthsuptoseveralthousandmeters,(iii)stagingthelateral surveys.Thus,muchoftheinformationtodayaboutlifeinfrac- boreholewithperforatedcasingandpackerstoseparatesmall tured shale lacks detailed insight on the metabolic functions (∼200m)regionsforfocusedstimulationand(iv)hydraulicfrac- withtwoexceptions(Dalyetal.2016;Mohanetal.2014).Wesum- turingoftheblackshaleinisolatedstagesbypositivelysurging marize the literature assessing microbial life in pristine shale alargefluidvolumeunderhighpressure(upto12000psior80 usingshalecorescollectedbycleandrillingortracermethods. MPa) into the formation, resulting in an extended network of Wealsocompiledinformationdescribingmicrobialcommuni- fracturesintotheformation(Fig.2A)(Arthuretal.2008;Kargbo ties in drill muds and waters from holding ponds (containing et al. 2010; Soeder 2010; Gordalla et al. 2013; Vidic et al. 2013). freshwaterforinjectionduringhydraulicfracturing),produced Stimulationwithhydraulicfracturingimprovesrockconnectiv- fluids(fluidsthatreturnfromtheshaletothesurfaceafterhy- ityuptoseveralordersofmagnitudebyexpandingshalefrac- draulicfracturing)andwastetanks(containersthatstorepro- turesfrommicron-sizedopeningstofracturesgreaterthanthe duced fluids for future treatment or recycling in other wells). 4 FEMSMicrobiologyEcology,2016,Vol.92,No.11 Fromthisknowledge,wediscussfutureresearchneedstoad- (Onstottetal.1998),adeepgoldmineinSouthAfrica(Onstott dressemergingindustrialandenvironmentalproblemsassoci- etal.2003;Chivianetal.2008),ahardrockrepositoryinSweden atedwithshaleenergydevelopment. (KotelnikovaandPedersen1998;HavemanandPedersen2002; Pedersen2012),adeephighertemperatureColoradosandstone shale (Colwell et al. 1997) and a shallower sandstone shale in MICROBIALLIFEINPRISTINESHALE: NewMexico(Fredricksonetal.1997;Krumholzetal.1997). EVIDENCEFORINDIGENOUSHARDROCKLIFE Withintheexistingbodyofwork,FredricksonandBalkwill’s review(2006)highlightingtheimportanceofshaleorganicmat- Ourunderstandingofmicrobialdiversityfrompristineshalehas ter in supporting microbial metabolic activities along shale- remainedpoorlyconstrained(Edwardsetal.2012;Colwelland boundingformationshasgreatlycontributedtoourknowledge D’Hondt2013)owinginparttotheexpenseandchallengesasso- of deep microbial life. These views are supported by Schlegel ciatedwithrockcoringatthousandsofmetersbelowtheground andcolleagues’(2013)characterizationoflabileandrecalcitrant surface(Lehmanetal.1995;McKinleyandColwell1996;Peder- organicmatterfromNewAlbanyshale.Thesestudiessuggest D o senetal.1997).Liketheirsubseafloorcounterparts,microbesin- thatnativeshalebacteriawithfermentativeandsyntrophicca- w n habitingdeepshalemusthavethecapacitytowithstandhigh pabilitiesareinvolvedinthebreakdownofkerogenunderelec- lo temperatures(>50◦C)andpressures(>30MPa),acidicpH,nu- tron acceptor-limited conditions, producing fermented prod- ad e trient limitations, high salinities, fluid movement constraints ucts that support methanogenesis or respiration where other d andtheabsenceoflight(Onstottetal.1998;Schrenketal.2010; electronacceptorsareavailable.Significantlyhighersulfatere- fro m Fichter et al. 2012; Olsson et al. 2013; Picard and Daniel 2013; ductionactivityandacetateproductioninshale-sandstonein- h Santillan et al. 2015). Black shale formations differ from other terface cores, as compared with core taken from within the ttp s deep seafloor and terrestrial environments in being abundant shale,suggestedenhancedmicrobialactivityoccursalongshale ://a inorganiccarbon(FredricksonandBalkwill2006;Schrenketal. formationinterfaceswhereporesizesarelargerandfermenta- c a 2010)yetconstrainedbysubmicronporespaces(Colwelletal. tionproductsdiffusetoareaswithalternativeelectronacceptors de m 1997;Fredricksonetal.1997;Langeetal.2013),featuresthatlimit (Fredricksonetal.1997;Krumholzetal.1997;Krumholz2000). ic microbialmobilityandtheadvectionordiffusionoffluidsand Alongwithsulfate-reducingandacetogenicbacteria(Fredrick- .o u gasesthroughporesandfractures. sonetal.1997;Krumholzetal.1997),iron-reducers(Colwelletal. p .c Ofalltheconstraintsonmicrobiallifeinnativeshales,space 1997)andmethanogens(Onstottetal.1998)haveallbeenculti- o m is probably the most significant. When shale pore throats are vatedfrompristineshalecores.Thesestudiessuggestthatdeep /fe small (i.e. <0.2 μm), microbial activity appears to be limited shalesofmanyages,mineralogiesandgrainsizessupportmi- m s tolarger,interconnectedporesandfractures(Fredricksonetal. crobiallifepriortofracturing. ec 1fi9ll9e7d;Bwuitchhworagltaenricetmala.2tt0e1r5()B,ourchmwaatrltixerveotidasl.,w20h1i5c)hoarrefotrympiactaiollny /artic MICROBIALANDBIOGEOCHEMICAL le fluids(i.e.gasesorbrines)(Onstottetal.1998).Ontheotherhand, -a SIGNATURESINHYDRAULIC-FRACTURED b duetothehighTOCcontent,blackshalesarefissileanddomi- s natedbyopenandinterconnectedfracturesorbedding-parallel SYSTEMS trac planesofweakness(Lashetal.2004;Engelderetal.2009).Asa t/9 result,naturalfracturesinblackshale(Fig.1B)canpermitfluid Inadditiontoindigenousorganisms,inputfluids/mediaintro- 2/1 ducedduringthedrillingorstimulationprocessvianon-sterile 1 andgasmovementincludingnutrientrechargefromfreshme- muds, equipment or well completion source waters may also /fiw teoricwateroverlonggeologicperiods(Martinietal.2003,2008; 1 provideinoculaoftheshaleenvironment(Table1).Studiesof 6 McIntoshetal.2010;OsbornandMcIntosh2010;Schlegeletal. 6 the various fluids associated with all aspects of the hydraulic /2 2011b; Darrah et al. 2015). Therefore, microbes may have mi- 4 gratedalongwithsubstrates,electronacceptors,hydrocarbons fracturingprocesshavebeguntoidentifythemicrobialtaxaand 02 9 and brines through these formations via large-scale meteoro- associatedbiogeochemicalconditionsimpactingkeyshaleen- 18 logicalconnectionsafterpaleopasturization(Colwelletal.1997; ergyandinfrastructureissuesandarediscussedbelowingreater by Martinietal.1998,2003;Onstottetal.2006;SherwoodLollarand detail. gu e Ballentine2009)enablingslowmicrobialproliferation. s Like other deep subsurface rocks, which report viable cell Drillingwatersandmudsareamicrobialinoculumto t on numbersontheorderof102–105cellsg−1or103–105cellsmL−1 0 shale 9 pore fluids (Stevens and McKinley 1995; Pedersen et al. 1997; A p K20o0te3l)n,bikioomvaaassnddePnesdietyrsiennp1r9is9t8in;Leeshhmalaeniseltoawl.,2w0i0t1h;cOenllsntoutmtebtearls. Dsurrilflaincegamnuddmsaluinbtraicianteprtehsesudrreislltbhirt,oumgohvoeurtotchkecbuotrteinhgoslet.oStphee- ril 20 estimatedat101–105cellsg−1(Onstottetal.1998)andphospho- cialblendingtanksmixwater,powderedclaysandthickenersto 19 lipid fatty acids concentrations <32 pmoles g−1 rock (Lehman producedrillingmudswithaviscosityanddensitythatbalances et al. 1995; Colwell et al. 1997; Fredrickson et al. 1997; Onstott pressureswithintheformation(Struchtemeyeretal.2014).Com- etal.1998).AlthoughtherearenoDNA-basedstudiesdescribing paredtoothermarineandterrestrialdrillingexpeditions(On- indigenousmicroorganismsinPaleozoic-agedblackshales(Or- stottetal.1998;Colwelletal.2011),muchlessisknownabout dovician,Devonian,CarboniferousandPermian,255–485million microbialcommunitiesintroducedtoshaleviathedrillingpro- yearsago)priortohydrocarbondevelopment,studiesonlater cesses. depositedMesozoic-agedshale(JurassicandCretaceous,70–200 To date, one study has described the biomass and micro- millionyearsago)alongwithothercloselyrelatedfine-grained bialassemblagesofdrillingmudsusedforblackshaledrilling. sedimentary rocks provide evidence of viable microorganisms Struchtemeyerandcolleagues(2011)compareddrillingmateri- livingintheporesand/orfracturesofsubsurfacerocks.Exam- alsfromsevenwellsinTexas’sBarnettshale(Table1).Theau- pleswheremicroorganismshavebeendescribedfrompristine thors reported that drilling waters were low in biomass (103– rockincludeayounger,butcomparabledepthshaleinVirginia 10516SrRNAgenecopies/g)untilmixedwithmudcomponents, Mouseretal. 5 Sampletypesareclassifiedbasedonmedia(i.e.mudseralwellchemistryincludeswaterqualityparameters, Reportedmetadata Ammo-SpecificDissolvedGeneralnium,organicoxygenwelltotalni-Meta-com-orThio-chemistrytrogenbolitespoundsredoxsulfateMethane XXX XXXX XXX X Downloaded from mplescollectedfromblackshalewellsites.yflowbackversuslateproducedfluids).Gen Impound-LatefluidsAgedwellsmentsor49days–2yearsSeparatorwaste2yearsoroldertankstanks EnrichmentsEnrichmentsfromthreefromonewellwellsagedaged265–17monthsmonths Samplesfromthreetimepointsfortwowellsupto328days Day82and328afterfracturinginMarcellus;enrichmentfrom98daysafterfracturinginUtica TwoTwogas-waterproducedsepara-watertorstankssampledsampledover3–6over6monthsmonths https://academic.oup.com/femsec/article-a portingmicrobialcommunitiesandassociatedmetadatainsang(i.e.storagepondsversusproducedfluids)andage(i.e.earlelements. DrillingStorageEarlySamplemuds/ponds/Injectedfluids<Formationdescriptionwaterstanksfluids49days BurkettandFoursampleMarcellusenrichments;Shale,PAthreeforTerminalrestrictionfragmentlengthpoly-morphism(TRFLP)analysis;oneforDNAsequencingMarcellusNineteenSamplesSamplesShale,PAtotalsamples;fromfrom3–4threewellsthreetimefromsamewellspointsforpad,fluidseachwellcollectedwithinfrominjectedfirst14fluids,earlydaysandlateproducedfluidsMarcellusFivesamplesSampleDay7andShale,PA;frominputfromone13afterUticaShale,andproducedwellinfracturingOHfluidsfromMarcellusinoneMarcellusMarcelluswell;onesampleenrichmentfromaUticawellBarnett17totalShale,TXsamples;twogas-waterseparatorsandtwoproducedwatertanksatseparatesites;collectedon2–6repeattimes bstract/92/11/fiw166/2402918 by guest on 09 April 2019 ofstudiesregeoffracturiorinorganic Sequencinganalysis T-RFLPandIllumina,16SrRNA 454-Roche,16SrRNAbacteriaandarchaea IlluminaHiSeqmetage-nomicsbacteriaandarchaea 454-Roche,16SrRNA Table1.Summaryversuswaters),staelectronacceptors NumberonFig.1AAuthors etal1Akob.(2015) etal2Cluff.(2014) etal3Daly.(2016) etal4Davis.(2012) 6 FEMSMicrobiologyEcology,2016,Vol.92,No.11 e n a h et M X e d Thio-sulfat X e vn data Dissoloxygeorredox Reportedmeta SpecificorganicMeta-com-bolitespounds X X D Ammo-nium,totalni-trogen ownloa Generalwellchemistry X X X ded from Impound-mentsorwastetanks https://a or ca Agedwells2yearsSeparatoroldertanks Allthreewellsmorethanadecadeold Samplesfortwotimepoints,sixwellsareco-mingledintankpriortoseparator demic.oup.com/fem Latefluids49days–2years Biofilmsamplesfromcorrosioncouponssubmergedat2–3depths sec/article-a Earlyfluids<49days Samplesfromallthreewells,timingundis-closed Day1and9afterfracturing bstract/9 2 Injectedfluids Samplesfromthreewells /11/fiw1 6 Storageponds/tanks Pre-fracpondwatersfromtwosources Sourcewaterforonewell 6/24029 1 8 Drillingmuds/waters by gue SampleFormationdescription HaynesvilleThirteentotalShale,samples;TX/AR/LAfluidsfromthreewells,differentpadsinHaynesville,comparedtoonewellinPiceanceBasin(CO);deployedsteelcartridgesatmultipledepthsinallthreewellsAntrimFourtotalShale,MIsamples;threewellssampledin2009,onealsosampledin2002BarnettFourtotalShale,TXsamples;twotimeperiodsin2012forco-mingledtankcollectingproducedfluidsforsixwells;threewerereplicatesfromsampleperiodMarcellusThreetotalShale,PAsamples;onewell,samplesfromsourcewater,earlyandlateproducedfluids.SamesamplesasetalMohan.(2013)ES&T st on 09 April 2019 Sequencinganalysis FLXamplicon,16SrRNA Sangersequencing,16SrRNAarchaeaandbacteria Illumina,16SrRNAofarchaeaandbacteria Illumina,MiSeqmetage-nomics (continued) Authors etalFichter.(2012) etalKirk.(2012) etalLiang.(2016) etalMohan.(2014) Table1. NumberonFig.1A 5 6 7 8 Mouseretal. 7 e n a h et M X e d Thio-sulfat e vn data Dissoloxygeorredox X X Reportedmeta SpecificorganicMeta-com-bolitespounds X D Ammo-nium,totalni-trogen X ownloa Generalwellchemistry X X X X X ded from Impound-mentsorwastetanks Threeimpound-ments,sampledatsurface,middleandbottomdepths https://a Separatortanks Bakkensamplefrombottomofseparatortank cademic.o u Agedwells2yearsorolder 11wells,nowellagereported p.com/fem Latefluids49days–2years Dupli-catesfrom187day Onewell,8monthsafterfracturing Marcellussamplecollected18monthsafterfracturing sec/article-a Earlyfluids<49days Dupli-catesfromthreetimepointswithinfirst9days Bakkensamplecollectedaftergelwasbroken bstract/9 Injectedfluids Dupli-catesfromonewell SamplefromMarcelluswellcon-tainingchemicalsbutnosand 2/11/fiw1 6 Storageponds/tanks Sourcewaterforonewell Twofreshwa-terholdingpondsusedforonewell 6/24029 1 8 Drillingmuds/waters by gue SampleFormationdescription MarcellusSixtotalShale,PAsamples;onewell,fluidscollectedfromsourcewaters,injectedfluids,earlyandlateproducedfluidsMarcellusNinetotalShale,PAsamples;threebiocide-treatedimpound-ment,threeuntreatedim-poundment,threepretreatedandaeratedimpound-mentEagleFord,ThreetotalTXsamples;twoholdingpondsandoneproducedwatersample NewAlbany11totalShale,ILsamplescollectedfromwellheadMarcellusFourtotalShale,PAsamples;andBakkeninjectedandShale,NDproducedfluidsfromonewellinMarcellus;producedfluidsafterbreakerandfromseparatortankinBakken st on 09 April 2019 Sequencinganalysis 454-Roche,16SrRNA Sangersequencing,16SrRNAarchaeaandbacteria 454-Roche,16SrRNA TRFLP,archaea Illumina,16SrRNA (continued) Authors etalMohan.(2013b) etalMohan.(2013a) Santillanetal.(2015) Schlegeletal.(2011a) etalStrong.(2014) Table1. NumberonFig.1A 9 10 11 12 13 8 FEMSMicrobiologyEcology,2016,Vol.92,No.11 e n a h et M X X e d Thio-sulfat e vn data Dissoloxygeorredox Reportedmeta SpecificorganicMeta-com-bolitespounds X D Ammo-nium,totalni-trogen ownloa Generalwellchemistry X X X ded from Impound-mentsorwastetanks Barnettsample60dayspost-frac;Marcellus139to5yearspost-fracfromfivetanks https://a Separatortanks Twogas-watersepara-torssampledover661–787dayspost-frac cademic.o u Agedwells2yearsorolder p.com/fem Latefluids49days–2years Samplesfromallthreewellsafter5months sec/article-a Earlyfluids<49days Samplesat24hand2months bstract/9 Injectedfluids Samplesfromblenderafterchemicalandsandaddition SamplesfromoneBarnettandoneMarcellussitepre-injection 2/11/fiw1 Storageponds/tanks Holdingpondandholdingtankafterbiocideaddition 66/24029 Drillingmuds/waters Watersandmudsfromsevenwellsites 18 by gue SampleFormationdescription BarnettFourteentotalShale,TXsamples;sevenwellsfromdifferentpads,drillingwatersanddrillingmudscollectedateachwell.BarnettEighttotalShale,TXsamples;twowellsfromdifferentpads,holdingpond,pre-fracandearlyflowbacksamplescollectedBarnettFifteentotalShale,TX;fluidsamples;MarcellustwoShale,PApre-injection,nineproducedwatertanks,fourseparators AntrimThreetotalShale,MIsamples;threecloselyspacedwells,fluidscollected5monthsafterfracturingwithN2foam.Onewellwasrefracturedthreetimes st on 09 April 2019 Sequencinganalysis 454-Roche,16SrRNA 454-Roche,16SrRNA Illumina,16SrRNAandmetage-nomics;archaea IlluminaMiSeqfor16SrRNA (continued) Authors Struch-temeyeretal.(2011) Struch-temeyeretal.(2012a) etalTucker.(2015) Wuchteretal.(2013) Table1. NumberonFig.1A 14 15 16 17 Mouseretal. 9 resulting in an order of magnitude or more increase to 106– ing the fracturing process. Microbial communities in holding 107 gene copies g−1. Drilling muds, which had lower diversity ponds were most closely related to typical freshwater bacte- than drilling fluids, were dominated by Firmicutes (29%–90%) ria,includingBacteriodetes(Flavobacterium),Betaproteobacteria (primarilyEubacteriumspp.;Thermoanaerobacter,Acetivibriogen- (Comamonadaceae)andGammaproteobacteriaincludingfam- erawithinBacilli;andRuminococcuswithinClostridia),along iliesAeromonadaceae,AlteromonadaceaeandChromatiaceae. withGammaproteobacteriasuchasPseudomonadalesandAl- Microbial communities sampled in the Barnett holding ponds teromonadales (7%–67%). In drilling waters, mixing with the were3–4timeslowerbiomassandhaddifferentmembersfrom higherbiomasscontainingmudssignificantlydecreasedtherel- those in Haynesville shale, demonstrating that source water ative abundance of dominant phyla (e.g. Actinobacteria, Aci- andsitehandlingcanplayamajorroleinthetypesandnum- dobacteria,Gemmatimonadetes).Onepossibleexplanationfor bers of bacteria sent down the well. To better identify organ- thechangeincommunitystructureandbiomassisthecompo- ismscapableofcolonizingwellinfrastructure,steelcartridges sitionofthedrillingmuds;mudscontainlabilethickeners(e.g. weredeployeddownwellandbiofilmsanalyzed.Interestingly, cellulose,nuthulls,cedarfibers,xanthamgum),formsofsul- communities observed on steel coupons, including members D o fur(e.g.barite,lignosulfonates)andcolonizationsurfaces(ben- oftheProteobacteria(e.g.Ralstonia,Sphingomonas,Pseudomonas, w n toniteclays)thatmayselectforcertaintaxaandincreaseoverall Stenotrophomonas), Spirochaeta, Acinetobacter and Acidobacterium lo a biomass(Struchtemeyeretal.2014). differed greatly from those observed in produced fluids, sug- d e gestingthatplanktonicsamplesmaynotfullyrepresentshale- d Colonizationofengineeredfluidsandinfrastructureis attachedcommunities(Fichteretal.2012).Takentogether,these from anothermicrobialsourceforshale studieshighlightthathydraulicfracturing,inadditiontoprovid- h ingfluids,nutrientsandelectronacceptorstosupportlife,also ttp s Several published studies have described the presence and providesthebiomasssourcetocatalyzethebiogeochemicalre- ://a membership of microorganisms in holding ponds, tanks and actionsoccurringinfracturedshales.However,itisunclearfrom c a blenders that serve an important on-site water management existingstudieswhetherthepresenceorabundanceofcertain de m roleduringthewellcompletionprocess(Table1).Thesestud- taxaininjectedfluidswillconstituteaninevitableeconomicloss ic ies provide additional insight into the organisms being in- forindustrythroughdetrimentalactivities. .o u jected into the deep subsurface during hydraulic fracturing. p .c Engineered fluids can host diverse phyla derived from many o Biocidesareusedtocontroldeleteriouseffects m dinifcfleurdeinntgfreAschtiwnaotbearcsteoruirac,esB(aec.tge.rloaikdeest,esgroaunnddwPartoetreoobrarcivteerrisa) ofmicrobialgrowthintheshalesystem /fem s (Alpha-,Beta-andGamma-)(Fichteretal.2012;Struchtemeyer Among the chemical additives used at these sites, the pres- ec amnedmEblsehrashhiepdi2n01th2ae;sMeoflhuaidnsetsaele.m20s13tob;bCelusftfreotnagl.ly20i1m4p).aNcotetadbblyy, etoncmeicarnodbieoflfoegcitsitvse.nTehses oofilbainodcidgeassminadyusbteryoifngvreesattsessitginnitfiecraenstt /article themixtureoffreshwatersourceswithrecycledproducedwa- resourcesinbiocidestoprotectthewellandassociatedsurface -a b toefrtafrxoamaspsroecviaioteudslywidthrilmleadrisnhealeenvwireollnsm,reensutslt(ien.gg.iCnobseigtinaa,tPusreeus- icnefrrnass,trinuccltuudrein(ge.wg.epllipsionugr,inpgo,nrdess,ertavnoikrsp)lfurogmginpgr,ogdeuncetriaotniocnono-f strac doalteromonas)(Cluffetal.2014)andbrines(e.g.Roseovarius)in toxicandmalodorousgasses,equipmentcorrosionandproduct t/92 injectedfluids(Mohanetal.2013b). degradation(seereviewbyGasparetal.(2014)onmicrobialcon- /1 1 Differences in the chemical additives and the machinery trolinthesesystems).Biocidesareappliedtosourcewatersused /fiw usedtoblendfracturefluidsmayalsorepresentasourceofmi- forinjectedfluidsaswellasimpoundmentpondsandtanksthat 1 6 crobesorselectiveagentsthatcaninfluencethemicrobialcom- store produced fluids before treatment or reuse (Mohan et al. 6/2 munityinjectedintothesubsurface.Tothisend,Struchtemeyer 2013a),withselectiondependentongeology,chemicalcompat- 40 andElshahed(2012a)characterized microbialcommunitiesby ibility,costandefficacyintargetingacid-andsulfide-producing 29 16S rRNA gene sequencing and cultivation in holding ponds, bacteria(Johnsonetal.2008).Biocidalcompoundsusedbyin- 18 tanksformixingbiocidesandsourcewaters,andblendersused dustryvarygreatlyintheircomposition,structureandmodeof by formixinghydraulicfracturingchemicalsandproppantpriorto action(seeKahrilasetal.(2014)forareviewofthesecompounds), gu e wceelllleisntjiemctaitoensiinndtwicoatBeadrnthetattsahcaidle-pwreoldlsu.cMinogstbapcrotebraiabl(eAnPuBm)abnedr abniodcisdeevseroanlsthtuedrieedsuhcatvioenevoafluviaatbeldetcheellsefafencdtivcoenmemssuonfitsypecocimfic- st on sulfate-reducingbacteria(SRB),metabolismsimplicatedinbio- position,withmixedresults(Johnsonetal.2008;Rimassaetal. 09 corrosion,werereducedbyanorderofmagnitudeafterbiocide 2011;Struchtemeyeretal.2012b;Vikrametal.2014;Erkenbrecher A p ttrheraotumghenbtl.eInndtienrge,stininjegclyt,ioanddanitdioflnoawlcboancktapcetrtiiomdesrwesituhltbeidocinidneos ecteanlt.2st0u1d5i;eSsahnativlleansheotwaln.2t0h1e5;eLffiiacnagcyetoafls.o20m1e6)o.fFothreexmamosptlceo,mre-- ril 20 1 furtherreductionincultivatablecells,suggestingapossibleinhi- monlyusedbiocides(e.g.glutaraldehyde)decreasesinthepres- 9 bitionorcross-linkingeffectfromchemicalmixingormicrobial enceofsoils(McLaughlinetal.2016),organics(Struchtemeyer tolerancetobiocidesthroughthewellcompletionunitprocesses etal.2012b)orhighsalinity(Vikrametal.2014;Erkenbrecheretal. (Kahrilasetal.2014). 2015).Additionally,certainbiocidesmayalsobemoreeffective In an effort to assess the capacity for microbial induced againstshale-specifictaxa(Liangetal.2016)whomaybecapable corrosion in unconventional gas wells, Fichter and colleagues ofdevelopingresistancetobiocidesaftercontinuedexposureto (2012)analyzedsourcewatersandproducedfluidsfromthree producedfluids(Vikrametal.2014;Liangetal.2016).Coupled wells in the Haynesville shale (TX-LA). Like the Barnett shale withlittleavailableknowledgeastohowbiocidesmayinteract studyabove,fluidswereassessedbytargetedcultivationofAPB withotherchemicaladditivesusedduringfracturing(Kahrilas and SRB taxa. Fluid from holding ponds contained ∼4 × 106 etal.2014),moreempiricalresearchisneededtoaccuratelydose cellsmL−1 withalargepercentageofcultivatableAPB(1×106 anddesigntargetedbiocidalcompoundsfordominanttaxain cellsmL−1)aswellasSRBinlessernumbers(1×103–1×104 theengineeredshalesystemaswellastounderstandtheirfate cellsmL−1),suggestingviable,deleteriousbacteriaabounddur- intheenvironment. 10 FEMSMicrobiologyEcology,2016,Vol.92,No.11 2013b (A) (B) D o w n lo a d e d fro m h ttp s ://a c Figure3.(A)Geographiclocationsofpublishedstudiesthatincludedmicrobial16SrRNAgenedatacollectedfromUSblackshaleformations,includingAntrim(MI), a d Barnett(TX),Burkett(PA),Marcellus(PA)andHaynesville(TX-LA).(B)Presenceorabsenceof16SrRNAgenesfrommicroorganismsmostcommonlydetectedacross e formations.Presenceisconsideredtobearelativeabundanceof>0.05%.Thecoloredcirclescorrespondtowelllocationsin(A).Differencesinthetypeofmicrobial mic analysesaredenotedinitalicsundertheauthor’sname. .o u p Shale-derivedfluidshavedistinctmicrobialmembers seriessamplingincludingearlyandlateproductionwatersam- .co m Though shales are not created equal (differing in well depth, plesfromMarcellusshalewells(Mohanetal.2013b;Cluffetal. /fe 2014),andtwootherstudieswith‘snapshot’lateproductionwa- m shaleformation,periodofproduction,geology,biogeochemistry, s tersamplesfromBurkett(Akobetal.2015)andBarnett(Davis e etc.),strongphysical(e.g.temperature)andchemical(e.g.salin- etal.2012)shales. c/a ity)featuresaresharedacrossformationsthatmayresultinen- Forthetimeseriesstudies,sourcefluidsforhydraulicfractur- rtic vironmentalfiltering.Todate,mostpublicationshaveusedava- le ingshowmarkedlydistinctinitialmicrobialcommunitiesacross -a riety of 16S rRNA gene-based approaches (clone libraries, 454 the shale wells despite studies with the same operator (Cluff bs pyrosequencingandIlluminaMiSeqtargetingtheV4region)to etal.2014).Hydraulicfracturingflowbackwatersatearlytime tra characterizemicrobialcommunitystructureandmembershipin points(1–14dayspost-fracturing)exhibitdramaticshiftsinthe ct/9 producedfluidsfromblackshalewells(Table1).Timeseriesdata 2 microbialcommunity(Fig.4).Afterinjectionintothedeepsub- /1 tahnadtipnrcolduudceemdiflcuroidbsiaolvaenraltyimseesoarfeinlpimutitferadcdtuureetfloutihdse,dfliofwficbualctky sriucrhfmaceen,tfloufiddsifrfeetruernntinmgictroobthiaelstauxrfaacceomimpamreeddiatoteilnypsuhtoflwuiedns-, 1/fiw 1 in obtaining samples. An additional barrier is the capacity to with dynamic taxa changes over the next 2 weeks. Halotoler- 66 extract and amplify DNA from fluids because of low biomass antandhalophilicGammaproteobacteria(e.g.Marinobacter,Vib- /24 andinhibitors(Akobetal.2015;Liangetal.2016).Unfortunately, 0 rio,PseudomonasandAcinetobacter)arehighlyenrichedinthese 2 manyofthepublishedstudieshavenotdepositedsequencing 9 earlyfluids,whereasingleOTUcanaccountforupto48%ofthe 1 datainpublicdatabasesordonotprovideaccompanyingrela- relativeabundance.Inparticular,PseudomonasandAcinetobacter 8 b tiveabundanceormetadatatolinksequenceabundancesand generaarekeymicrobialindicatorsofearlytimepointsacross y g samplenames.Figure3summarizes16SrRNAgenedatafrom Marcelluswells(Fig.4).Otherkeytaxathatservetodistinguish ues studies that had publically accessible data. To date, only two earlyfromlatesamplesincludeArcobacterspp.intheEpsilon- t o studies,bothfromhydraulicallyfracturedMarcellusshale,in- n proteobacteria(upto24%inday9)andMarinilabiliaspp.(16%in 0 clude input and time series data; one focused exclusively on 9 day7)intheBacteroidetes(Fig.4). A bsaamctperliinag(Maothlaatnerettiaml.e20p1o3ibn)twshanildetihnecloutdheedrianrcclhuadeead(aCdludfiftieotnaall. welOlenncteerflsopwrboadcukctvioonluamnedsosvtearrttimtoewthaneesaalfinteitry2i–n4flwueideskss,tatbhie- pril 2 2014)(Fig.3). lizearound90000mgL−1(intheMarcellusshale)(Mohanetal. 019 Toexaminemicrobialmemberssharedacrossshalesofvary- 2013b;Cluffetal.2014)asthefluidsreachequilibriumwithfor- ingagesanddepths,wecompiledthepublicallyavailabledata mationbrines.Surprisingly,inspiteoftheseinitialdifferences sets from the studies in Table 1 to generate a shale-wide op- ininputandearlyflowbacksamples,themicrobialcommuni- erational taxonomic unit (OTU, 97% identity in 16S rRNA se- tiesconvergetoacharacteristicandstatisticallydifferentstruc- quence)table.Methodsaredescribedinourpipelinerepository tureinproductionwateratlatertimepoints(49–328dayspost- (github.com/lmsolden/Qiime-pipeline)andalldatafilesarepro- fracturing). Consistent with a changing microbial community vided(SupportingInformation).Givenalackofavailablemeta- structure,Shannon’sdiversityindicesareindistinguishablebe- dinatwah,wicehctlhaesysiwfieedrethdeet1e6cSterdRN(eAarsleyq<u4e9ndceasysb,alsaeted>up49ondathyseatifmteer tweeninputandearlyflowbacksamples(Hinput =3.5;Hearly = 3.2),butdiversitydecreasessignificantlyintimepointscollected fracturing).Weconductedcomparative,non-parametricmulti- after49days(Hlate=0.4).Aligningwiththisdecreaseinmicrobial dimensionalscaling(NMDS)analysesincludingsequencingdata diversityisthechangeinabundancein16SrRNAgenesbelong- from four studies; the two aforementioned studies with time ingtoasinglegenus.HalanaerobiumintheFirmicutesbecome

Description:
microbial studies from US shale gas basins summarized in Table 1. (B) The natural . by Gaspar and colleagues (2014) with a comparative analysis of publically . Exam- ples where microorganisms have been described from pristine .. ative abundance of dominant phyla (e.g. Actinobacteria, Aci-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.