ebook img

From Rotating Atomic Rings to Quantum Hall States PDF

2.2 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Rotating Atomic Rings to Quantum Hall States

FromRotatingAtomicRingstoQuantumHallStates M. Roncaglia,1,2 M. Rizzi,2 and J. Dalibard3 1DipartimentodiFisicadelPolitecnico, corsoDucadegliAbruzzi24, I-10129, Torino, Italy 2Max-Planck-Institutfu¨rQuantenoptik, Hans-Kopfermann-Str. 1, D-85748, Garching, Germany 3LaboratoireKastlerBrossel,CNRS,UPMC,E´colenormalesupe´rieure,24rueLhomond,75005Paris,France Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the emblematic stronglycorrelatedquantumHallregime. Theroutesfollowedsofaressentiallyrelyonthermodynamics,i.e. imposingtheproperHamiltonianandcoolingthesystemtowardsitsgroundstate. Inrapidlyrotating2Dhar- monic traps the roleof the transverse magnetic field is played bythe angular velocity. For particlenumbers significantlylargerthanunity,therequiredangularmomentumisverylargeanditcanbeobtainedonlyforspin- ningfrequenciesextremelyneartothedeconfinementlimit;consequently,therequiredcontrolonexperimental parametersturnsouttobefartoostringent. Hereweproposetofollowinsteadadynamicpathstartingfrom thegasconfinedinarotatingring. Thelargemomentofinertiaofthefluidfacilitatestheaccesstostateswith alargeangularmomentum,correspondingtoagiantvortex. Theinitialring-shapedtrappingpotentialisthen 1 adiabaticallytransformedintoaharmonicconfinement,whichbringstheinteractingatomicgasinthedesired 1 quantumHallregime. Weprovideclearnumericalevidencethatforarelativelybroadrangeofinitialangular 0 frequencies, the giant vortex state is adiabatically connected to the bosonic ν =1/2 Laughlin state, and we 2 discussthescalingtomanyparticles. n a PACSnumbers:73.43.-f,05.30.Jp,03.75.Kk J 8 While coherence between atoms finds its realization in Like in solid-state physics, most of the preparation pro- 2 Bose–Einsteincondensates[1–3],quantumHallstates[4]are cedures employed so far in rotating atomic ensembles ap- ] emblematicrepresentativesofthestronglycorrelatedregime. proached the GS by cooling down the system with a fixed s a ThefractionalquantumHalleffect(FQHE)hasbeendiscov- Hamiltonian. By contrast we explore in this paper an alter- g ered in the early 1980s by applying a transverse magnetic nativemethodthatconsistsinstartingfromaneasilyprepara- - fieldtoatwo-dimensional(2D)electrongasconfinedinsemi- ble state (typically uncorrelated), following a dynamic route t n conductor heterojunctions [5]. Since then, FQHE has never by changing an external parameter, and eventually obtaining a stoppedtointriguethescientificcommunityduetonon-trivial the desired state. This strategy has been successful for the u q transport properties and exotic topological quantum phases experimentalinvestigationofthesuperfluidtoMottinsulator . [6]. Such interest has also influenced the research in ultra- transitioninopticallattices[10]. Weproposetoimplementit t a coldatomicgases,whichinthelastdecadehavebeensuccess- toreachQuantumHallstateswiththefollowingsteps: (i)We m fullyexploitedasahighlycontrollableplaygroundforquan- engineer a Mexican-hat trapping potential by superposing a - tum simulations of many-body physics [3]. The large versa- standardharmonictrapwiththerepulsivepotentialcreatedby d tility of these setups allows one to confine atoms in 2D har- a“plug”laserbeam,whichisfocusedatthecenterofthetrap. n o monic traps and to impose an effective magnetic field either (ii) By stirring the gas, we prepare the N bosonic atoms in c by rapid rotation [7, 8] or by laser-induced geometric gauge agiantvortexstate, correspondingtothelowestenergystate [ potentials[9].Inprinciple,suchopportunityshouldallowone of the Mexican-hat potential for a given angular momentum 1 toexperimentallyexplorethebosonicversionofQHE,evenif L. (iii) The stirring is removed and the plug is adiabatically v unfortunatelyithasbeenhithertoelusive. switchedoff. (iv)Inthefinalharmonictrap,weobtaintheGS 3 From a theoretical point of view, a variety of interesting withtheinitiallyimpartedangularmomentumL,thankstoro- 9 groundstates(GS’s)havebeenidentifiedforBosegasesasa tational symmetry. We show that if L=N(N−1) then the 5 function of the effective magnetic field [7, 8]. At zero field, 2-body contact interactions drive the gas into the celebrated 5 . i.e., without rotation, the particles undergo Bose–Einstein bosonicν =1/2Laughlinstate[4]. 1 condensation [1, 2] and the atomic ensemble is superfluid. 0 1 Differentlyfromarigidbody,asuperfluidofNparticlesreacts Singleparticlephysics 1 to rotation with the formation of quantized vortices, whose : numberN increaseswiththerotationfrequency.Atlargefill- v φ i ingfactorν=N/Nφ (cid:38)10anorderedvortexlatticeisformed. In experiments with rotating atomic gases, particles are X Forν<10,thelatticemeltsbecauseofquantumfluctuations, usually trapped by a harmonic potential and stirred by time- r which signals the breakdown of the mean-field description varying magnetic field or auxiliary laser beams [7]. In the a and the access into the FQHE regime. The filling factor is framerotatingatangularspeedΩΩΩ=Ωz,theHamiltonianofa now better defined as ν =N/mmax with mmax the maximum singleparticleintheharmonictrapoffrequencies(ω,ω,ωz) angularmomentumoccupiedbysingleparticles.FQHEstates canbewrittenas areobtainedforvaluesofν oforderunity,whichcorrespond 1 M M toverylargetotalangularmomentaL∝N2. Htrap=2M(p−A)2+ 2 (ω2−Ω2)(x2+y2)+ 2 ωz2z2, (1) 2 Εm1002468!"!!""!!!"""!!!!""""!!!!!"""""!!!!!!"""""!!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!"""""!!!!!""""!!!!!""""!!!!""""!!!! "5 0 5 10 15 20 25 m (a) (b) (c) Figure1: Mexicanhatpotential:(a)Bosonicatomsareconfinedinacombinedtrapwith(i)anisotropicharmonicconfinementand(ii)the dipolepotentialcreatedbyablue-detuned,gaussianlaserbeamthatplugsthetrapcenterandpushestheparticlesawayfromthispoint. The resultingpotentialexhibitsaMexican-hatshape. (b)Underfastrotation,thesingle-particleenergyspectrumexhibitsaLandauLevelpicture (reddashes),wherelevelsarearrangedinquasi-degeneratemanifoldsasinthecaseofapurelyharmonictrapping(blueasterisks). Thelevel plothasbeendrawnforδ=0.09,α=3.0andw2=8.0,parametersthatwewilluseinthemany-bodyproblemforN=9.Thesingle-particle minimumofenergycanbeadjustedtoanydesiredvalueonangularmomentumbytuningthewaistandthepoweroftheplugbeam(m=8in thepresentcase).(c)InordertoenterFQHEregimeofthemany-bodyinteractingsystem,weproposetoswitchofftheplugbeam,eventually recoveringtheusualparabolicform. withA=MΩΩΩ×r=MΩ(−y,x,0). Inthefollowingwesup- Fig.1. Thiscanbedonebyshiningthecenteroftheharmonic posethatallrelevantenergiesaremuchsmallerthanh¯ω , so trapwithalaserbeampreparedinacircular,GaussianTEM z 00 that the motion along the z direction is frozen and the prob- mode[11].Whenthelaserfrequencyischosenlargerthanthe lem is effectively two-dimensional. In the limit of centrifu- atomicresonancefrequency(‘bluedetuning’),thelaserbeam gal deconfinement Ω → ω, the system is formally equiva- creates a repulsive dipole potential proportional to the light lent to bosons of charge q = 1 in uniform magnetic field intensity. The beam is chosen to be perpendicular to the xy B=∇∇∇×A=2MΩz. Fromnowon,weexpressenergiesand planeandthedipolepotentialisoftheform (cid:112) lengths in units of h¯ω and h¯/Mω, respectively. It is well U (x,y)=αexp(cid:2)−2(x2+y2)/w2(cid:3), (2) known [7] that the problem can be rewritten as two decou- w pledharmonicoscillatorsH =(2a†a+1)+δ(b†b−a†a), trap where w is the laser waist and α is proportional to the laser intermsofladderoperatorsa,b,andδ =1−Ω/ω isthefre- intensity. Thesumoftheharmonicpotential(x2+y2)/2and quencyoffset. Everystateislabeledbytheoccupationnum- ofU (x,y) has a bump in x=y=0 in the laboratory frame bern ,n ofthetwomodes,anditisdenotedas|ψ (cid:105).Note w a b nb,na whenα >w2/4. thatagaugefieldsimilartotheoneenteringinto(1)canalso At moderate intensities of the plug, as the ones employed be induced by geometric phases instead of rotation [9]. The inourpreparationscheme,theclassificationofsingle-particle schemeoutlinedinthepresentpapershouldworkequallywell energy eigenstates in terms of LL remains valid (see Fig. 1 in this case, the only significant difference being that (1) is and Methods). In the LLL the single-body energies are in now the single-particle Hamiltonian in the laboratory frame, goodapproximation: insteadoftherotatingframe. In the limit δ (cid:28)1, the quantum number na identifies dif- (cid:18) 2 (cid:19)−(m+1) ε =mδ+α 1+ . (3) ferentmanifoldscalledLandauLevels(LL).WithineachLL, m w2 thestates(labeledbyn )arequasi-degenerateduetothesmall b separationenergyδ. Thequantitym=n −n istheangular At fixed laser parameters α and w, the angular momentum b a momentumoftheparticle. InthelowestLandaulevel(LLL), m that minimizes εm is a decreasing function of the rotation na =0 and the one-body eigenfunctions assume the simple frequencyoffsetδ. Wedenotebyδm thevalueforwhichthe expression ψm,0(z) = √1 zme−|z|2/2, where z now denotes levelcrossingεm+1=εm occurs. TheLLLstatewithangular πm! momentummisthusthelowestenergystatewhenδ ischosen the position in the complex plane (z=x+iy), with energies intheintervalδ <δ <δ ,whosewidthis m m−1 E =mδ andangularmomentumm. m The first key feature of our proposition is to replace the (cid:18) 2 (cid:19)2(cid:18) 2 (cid:19)−(m+2) I =δ −δ =α 1+ . ordinary harmonic potential with a Mexican-hat one, like in m m−1 m w2 w2 3 Later on, we will be interested in choosing a specific value GS with L=L +1 (the interaction energy is zero in both Lau m=(cid:96)andinmaximizingthewidthI ofthestabilitywindow. cases),whichisaverystringentrequirement. (cid:96) This can be done, at fixed intensity α, by choosing w2 =(cid:96). HereweproposeadifferentpointofviewwheretheFQHE The central rotation frequency in the stability window for (cid:96) regime can be tackled from a dynamical perspective, with a thencorrespondsto two-stepprocedure. Thefirststepisaddressedinthissection and it consists in the preparation of a giant vortex state of N 1 (cid:96)+1(cid:18) 2(cid:19)−((cid:96)+2) particlesintheMexican-hatpotentialofFig. 1a,withthede- δc= (δ +δ )=2α 1+ . (4) (cid:96) 2 (cid:96)−1 (cid:96) (cid:96)2 (cid:96) siredangularmomentumL=LLau. Thispreparationiseasier thanthedirectproductionoftheLaughlinstate,thankstothe Noticethatforlargevaluesof(cid:96),wegetδc∝α(cid:96)−1,thusifwe favourableparametersensitivityoftheMexican-hatpotential. (cid:96) wanttokeepitsizable,wehavetochooseα ∝(cid:96). Morepreciselytheincreasedmomentofinertiaofthegasen- ablesonetoreachL∝N2 inarelativelybroadintervalofΩ. The second step involves the adiabatic transformation of the Many-bodyphysics giantvortexstateintheLaughlinstate,anditwillbeanalyzed inthenextsection. In the context of cold bosonic gases in the LLL subspace, Inthelimitcaseofnointeractions,everysingleparticlein two-particlesinteractionscanbemodelledbythecontactpo- theMexicanhatpotentialshouldrotateatangularmomentum tential (cid:96)=L/N. Thebosonsthencondenseinthegiantvortexstate H =c ∑δ(2)(z −z ), (5) (cid:34) (cid:35) 2 2 i j N i<j Ψ(N)((cid:96))= ∏z(cid:96) e−∑j|zj|2/2, (7) v i i=1 whose strength is given by the adimensional parameter c = √ 2 8πas/az, where as is the 3D s-wave scattering length and similartothosealreadyobservedin[13]andtheoreticallyan- (cid:112) az = h¯/Mωz is the size of the ground state in the strongly alyzedin[14]. Asshownintheprevioussection,thewindow confineddirection[7,8].WithinthekernelofH2theν=1/2 ofstabilityI[(cid:96)Lau]isoptimizedforw2=(cid:96)Lau. ForN =9the Laughlinstate constraint α >w2/4 imposes α >2. We choose in the fol- lowingα =3,whichleadstoδ ∈(0.081,0.101). (cid:34) (cid:35) Lau ΨLau= ∏(zi−zj)2 e−∑j|zj|2/2 (6) leaIdninthgetopreasegnrocuenodfisntateterawctiitohnsL,t=heLintercvaanlobfevdaeluteersmfoinreδd i<j Lau either from a Bogoliubov analysis or from exact diagonal- has the lowest total angular momentum L =N(N−1), or ization. The main role of the interactions is to deplete the Lau equivalentlytheangularmomentumperparticle(cid:96) =N−1. contribution of the mean angular momentum (cid:96) in favour of Lau We first recall the practical difficulties to attain the FQHE neighbouring ones (cid:96)±q, with q(cid:28)(cid:96). The Bogoliubov anal- regime via a thermodynamic route for a pure harmonic con- ysis is well suited for strong plugs (α > 1) where the de- finement in the xy plane. In a typical experiment with 87Rb pletion is small, while for intermediate regimes a full many- atoms(a =5nm),alongitudinalfrequencyω /2π =50kHz body numerical treatment is needed (see Methods). Thanks s z givesa =50nmandaninteractionparameterc =0.5.Then, to the angular momentum conservation, the exact diagonal- z 2 already for a modest number of particles, the Laughlin state ization can be performed in each L sector separately and the isreachedonlyforrotationfrequenciesΩextremelycloseto conjugatevariableδ simplyyieldstheenergyshiftsLδ. The the centrifugal limit ω. For N =9 and c =0.5, we find us- phase diagram as a function of (α, δ) is presented in Fig.2b 2 ingexactnumericaldiagonalizationthattheLaughlinstateis for N =9, c =0.5. It strongly supports the sketch drawn 2 the GS only for δ <5.510−3 (see figure 2a). This very before for non-interacting particles. In particular the com- Lau lowthresholdmakesitdifficulttotransferthedesiredangular puted ground state for a Mexican-hat potential with α = 3 momentum to the gas. Indeed when the stirrer consists in a possessestherequiredangularmomentumL fortheinter- Lau rotatinganisotropicpotentialε(x2−y2)/2,thecorresponding valδ ∈(0.084,0.105),veryclosetotheoneinabsenceof Lau anisotropyεmustbechosensmallerthanδ toavoidadynami- interaction.Thiscorrespondstoa∼10%frequencydifference calinstabilityofthecenter-of-massmotion[12].Onehasthus betweenΩandω,whichisnotablylargerthanthetypicalstir- torestricttoextremelyweakstirrers,withεinthe10−3range. reranisotropyneededtosetagasinrotation.Thisensuresthat Howeveronemustalsochooseε (cid:29)u,whereuisthestrength thepreparationofthegiantvortexstatewithL=L should Lau ofthestaticanisotropydefectu(x2−y2)/2,otherwisethegas beratherrobust. cannot be effectively set in rotation. Unfortunately, in real- It is important to stress that the Mexican-hat potential is istic traps the typical values of u are at least of the order of employedjustforthescopeofinjectingtherightquantityof 10−3. Consequently it is quite problematic to fulfil simulta- angularmomentumL ,andnotforproducingtheLaughlin Lau neouslythesevariousconstraints. Lastly, wementionthatin state itself. The situation considered here is thus completely suchathermodynamicalprocedurethetemperaturehastobe different from former proposals suggesting to find a tradeoff keptbelowδ, i.ethegapbetweentheLaughlinstateandthe betweenΩandα thatoptimizesthefidelitywiththeLaughlin 4 (a) 0.4 0.20 4 0.010 45 Lgs 56 0 0.3 7 9 8 00..000068 63 ∆00..1105 5433221145627486 1/2∆ N 0.2 910 ∆ / c2000...111000048 α = 0 ∆ 63 0.1 72 0.096 0.004 (cid:179)8910 4 5 6 7 8 9 10 72 N 0.05 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.002 α / N 0.000 0.00 (b) x 10-3 Α(cid:61)0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 25 Α (a) (b) 20 N Fiziagtuioren2in: PahtrausnecdatieadgrLaLmLfboarsNis=(m9≤an2dNc=2=180).i5s.pEexrfaocrtmdeiadgsoenpaal-- 〉/ 15 4 2 ratelyforeachsectorofL,thankstorotationalinvariance. Energies H 10 5 〈 6 are then shifted by the total angular momentum term Lδ to draw 7 thephaseboundaries. (a)Inabsenceoftheplugbeam, α =0, the 5 8 9 windowofstabilityforLaughlinangularmomentum(LLau=72)is 0 10 narrowandextremelyclosetodeconfinementlimit. (b)Conversely, 0.0 0.1 0.2 0.3 0.4 0.5 theregionwithLLauopensupanddriftsawayfromδ=0astheplug α / N power α is ramped up (at constant w2=8); the same happens for (c) otherlargeangularmomentaaroundit. Forlargevaluesofα (typi- 60 50 [0.0,0.5] callylargerthanunity),theGSfoundwhenvaryingδ areessentially 102 40 [0.1,0.5] T30 non-correlatedstates,whereallatomsaccumulateinthesamegiant 20 vortexstate.ConsequentlythetotalangularmomentumLundergoes 101 10 0 jumpsofsizeN,correspondingtotheadditionofonefluxquantum 4 5 6 7 8 9 10 toeachparticle. Fα 4 N 1 5 6 7 10-1 8 state[15]. 9 10 10-2 0.0 0.1 0.2 0.3 0.4 0.5 α / N Adiabaticevolution Figure 3: Finite size scaling analysis. Data collapse of (a) the Once the gas has gained the desired angular momentum gap and (b) interaction energy (cid:104)H2(cid:105) as a function of α for an ini- L=N(N−1) via equilibrating in the giant vortex state (7), tialvalueofµ=c2N1/2/(2π3/2)∼0.15,correspondingtoc2=0.5 the stirrer at frequency Ω can be suppressed. The situation forN=9. Theinsetinplot(a)showsthefinitesizescalingofthe becomesrotationallysymmetricandthetotalangularmomen- Laughlin gap in the harmonic case (α =0). Our estimates gives ∆ =0.097(1) in the thermodynamical limit. (c) Scaling of the tum is thus conserved. Then, the slow removal of the laser Lau plugwillresultinaredistributionofparticlesaroundthemean function Fα ≡∆−2|(cid:104)Ψ0|(∂Uw/∂α)|Ψ1(cid:105)| whose integral provides anestimationfortheadiabatictime(inset). Atsizableenoughα’s angularmomentum(cid:96)Lau byrepulsiveinteractions. Suchare- ((cid:38)0.1N)thecurvescollapsefromabove,givingatotaltimeT which distributionreachesaparadigmaticformintheunpluggedhar- isapproximatelyconstantwithN(”×”points).Alasthepresenceof monictrap,wheretheLaughlinstate(6)hasnointeractionen- apronouncedbumpforsmallα’sleadstoT ∝N (”+”points). Al- ergyanymore. Fromatechnicalpointofview,wenotethatin ternativestrategiesthatleadtoloweradiabatictimesarediscussedin absenceofstirringwecannowlookfortheGSofthegasin Fig.5. the laboratory frame, within the subspace of the L that had z beenimpartedtothecloudduringthestirringphase. knownfromexactdiagonalization,thechangingrateoflaser ThesystemwillfollowtheinstantaneousGSΨ iftheun- 0 intensityα and/oritsrescaledcrosssection σ ≡w2/(N−1) plugging path can be followed slowly enough to satisfy the adiabatic condition (cid:12)(cid:12)(cid:104)Ψ0|(∂H/∂t)(cid:12)(cid:12)Ψj(cid:11)(cid:12)(cid:12) (cid:28) ∆2j, where Ψj withtimet isdeterminedbythecondition represents an excited eigenstate of energy Ej of the instan- F dα+F dσ (cid:28)dt , (8) α σ taneous Hamiltonian H, and where ∆ =E −E [16]. We j j 0 have checked numerically that the most stringent constraint where F ≡∆−2|(cid:104)Ψ |(∂U /∂x)|Ψ (cid:105)| is the matrix element x 0 w 1 originates from the first excited state Ψ and we thus focus ofthepotentialvariationinx=α,σ. Theminimaltotaltime 1 our discussion on this state. Once the gap ∆ = E −E is T required for adiabaticity will then be the integral of those 1 0 5 (cid:82) functions along the chosen path, T = (F dα+F dσ). In aim,constrainedoptimizationtechniquescanbeimplemented α σ the following, we first consider the case where the waist is using the data of the vector (F ,F ), represented in Fig.5. σ α kept fixed, which is experimentally straightforward since it Experimentally, another effective way of reducing the adia- involvesonlyavariationofthelaserintensity;thenweaddress batic ramp time is to increase the interaction coupling con- thegeneralcaseofchangingofbothα andσ. stantc ,hencethegap,viaeitherFeshbachresonances[17]or 2 WehaveperformednumericalsimulationsforuptoN=10 atighterlongitudinalconfinementωz. Forarampofα only, particles,inaLLLtruncatedsingle-particlebasism≤2N,in ournumericalcalculationswithN=9giveT ≈65,43,20for order to test the validity of the adiabatic approximation (see c =0.33,0.5,1.0,respectively,correspondingtotheempiri- 2 Methods). ForthechosentestcaseofN=9,c =0.5,ramp- calscalinglawT ≈20c−1. 2 2 ing down the intensity from the initial value α =4.5 at con- Finally we briefly address the consequences of some of stantσ =1,weobtainT ≈43(inunitsofω−1). Suchavalue the unavoidable experimental imperfections on the proposed of T is a reasonable time in state-of-art experiments, estab- scheme. The two principal perturbations that we can fore- lishingthefeasibilityofourschemeforN=9,asopposedto see are the imperfect centering of the plug beam and the theprocedureinvolvingapurelyharmonicrotatingtrap. residual trap anisotropy. We model these defects by writ- (cid:48) The exponentially increasing dimension of the Hilbert ing the dipole potential created by the plug beam as U = w space and the strong correlations involved ward off going αexp(cid:2)−2[(x−v)2+y2]/w2(cid:3),andbyaddingthetermu(x2− much further than N =10 particles with the exact diagonal- y2)/2 to the single-particle Hamiltonian to account for the ization method. To infer the behavior of larger samples, we staticanistropicdefect.Herevanduaredimensionlesscoeffi- performed finite size scaling of the relevant energies using cientscharacterisingtheseimperfections. Thesetwocoupling the Bogoliubov approximation (see Methods). Our scheme termsbreaktherotationsymmetry: intheirpresence,thean- requires the preparation of the gas in the ring with α ∝ N gularmomentumisnotaconservedquantityanymoreandthe and σ = 1, for which the chemical potential goes as µ (cid:39) gaswillundergoacascadefromL=L downtostateswith Lau c N1/2/(2π3/2). TheLLLapproximationrequiresµ<2,and noangularmomentum,bypopulatingthefirstexcitedLL.To 2 workingatfixed µ impliesc ∝N−1/2. Wethendeducethat getaconservativeestimate,weimposetheverystringentcon- 2 theenergygapbehaveslike∆∝N−1/2andtheinteractionen- dition that the total angular momentum remains unchanged ergyas(cid:104)H (cid:105)∝N(seeMethods).WehaveplottedinFig.3(a)- overtheadiabaticramptime,andweestimatethecorrespond- 2 (b)thevariationsofthegap∆andtheinteractionenergy(cid:104)H (cid:105) ing constraint on u and v using time-dependent perturbation 2 usingc =1.5N−1/2. Theexpecteddatacollapseiswellveri- theory (see Methods). The constraint on u is certainly the 2 fiedforvaluesofα/N largerthan0.1. mostchallengingone. Wefindthatthemaximaltolerabletrap Afinite-sizescalingcanbeperformedalsoforthequantity anisotropy u (cid:47)2∆ /N ≈0.2c /N. Taking u∼10−3 as max Lau 2 F enteringtheadiabaticcondition(8)andweplottheresult arealistictrapanisotropy,wefindthatourschemeshouldbe α atfixedwaistσ inFig.3c.Thisfunctiontakesitslargestvalues operationalforatomnumbersuptoN =100forc =0.5. max 2 intheintervalα∈(0,α )withα =0.1/N. Wecantherefore c c decompose the adiabatic path into two successive parts. In thefirstpartthepluglaserintensityα isdecreasedfromα = Detection i 0.5/N down to α and this can be down adiabatically in a c relatively short time T1 =(cid:82)ααciFαdα ∼5, independent of the Oneofthesimplesttechniquestoprobecoldatomicsetups numberofparticles(insetofFig.3c). Inthesecondpart(0≤ consists in taking time-of-flight (TOF) pictures [3]. The ab- α ≤αc) the breakdown of the scaling ∆∝N−1/2 imposes a sorption image of the density profile expanded after releas- slowdowninthereductionoftheplugintensity.ThetimeT2= ingtheharmonicconfinementcontainsindeedusefulinforma- (cid:82)αcF dα needed for this second part actually show a linear tionsabouttheinitialsituationinthetrap. Inthespecificcase 0 α increasewithN,hamperingthefeasibilityformorethanafew ofbosonsintheLLLregime,thedensityprofileisself-similar tensofbosons. intimeandtheTOFpicturesimplymagnifiestheoriginalpar- The sequence of spatial density profiles during the time ticledistributioninthetrap[18]. Giventhedirectconnection evolution is depicted in Fig.4a. From such a sequence it is between single-particle angular momenta and orbital radius clear that the gas starts feeding the trap center at the end of (seeMethods),aTOFimageallowsonetocomputetheangu- thepath. Analternativestrategytorampdowntheplugcon- larmomentum. Theν =1/2LaughlinstatewithN particles sists on reducing its waist w while maintaining α constant, exhibitsafairlyflatprofileofdensity0.5insidearimofradius √ this being performed in practice (up to the diffraction limit) ∼ N. ObservingsuchTOFimageswouldbealreadyafirst usingamotorizedfocusingopticalelement. Thecorrespond- hintthatonehaseffectivelyreachedtheQHEregime. ingevolutionofthedensityprofileinthetrapisrepresentedin Multi-particlecorrelationsofferevenmoreinsightintothe Fig.4bandinourspecificcaseitcanbecoveredadiabatically many-body state. These correlations are directly accessible inhalftimewithrespecttotheabovesituation(seeFig.5). if one uses a detection scheme that can resolve individual Anaturalextensionofouranalysisistoconsiderasimulta- atomswithsub-micronresolution[19,20]. Alternativelythe neousrampingofα andσ,inordertominimizethetotalevo- two-bodycorrelationfunctioncanbetestedatshortdistances lution time while fulfilling the adiabaticity criterion. To this using the resonant photo-association of spatially close pairs 6 Figure 4: Density profile during adiabatic evolution (N=9). The leftmost panel corresponds to a giant vortex like structure, whereas the rightmost one depicts the flat disk shaped profile of the Laughlin state. In the upper row σ = 1 is kept constant while α = 1.,0.5,0.4,0.3,0.2,0.1,0. The last part of the ramp down procedure 0<α (cid:46)0.1 is the slowest, due to the large value of Fα in this re- gion(seeFig. 3c). Inthelowerrowwesqueezethelaserwaistσ =1.,0.5,0.25,0.125,0.025,0.00625,0.atfixedintensityα=1.:particles spread towards the inner part of the trap in a different way, corresponding in a lower value of F and faster allowed rates of change. For σ systemswithinLLL,densityprofilesaftertrapreleaseandtime-of-flightimagingwillsimplydisplayrescalingsofthesepictures. ofinitialδ. Production,observationandcontrolofanyonsisoneofthe mostintriguingquestsmotivatingtheconsiderableeffortsto- wardsFQHEregime. Anyonsarequasiparticleswiththepe- culiarpropertyofsatisfyingnoncommonbraidingruleswhen moving around each other. In the Laughlin case the anyonic excitationsarequasiholes∏i(zi−zqh)ΨLau,whichcanbepro- ducedandcontrolledbyimpinchinganarrowstronglyrepul- sivelaserbeamatpositionz asputforwardin[22].Afurther qh feature of our proposal is that addressing a giant vortex with (cid:96)≥N permits in principle to get a final state with a whole manifoldofanyonicquasiholesandtostudyitsexoticproper- ties. Figure5:Mapofadiabaticityrequirements.Absolutevalueofthe Acknowledgements vector(F ,F )isplottedinthecolouredmapforN=9, evidenc- σ α ingthelargevalueofFα atlargeσ =w2/(N−1)andsmallα, as We acknowledge fruitful discussions with T. Busch, J.I. wellasthemorefavorableconditionifoneusesareductionintime Cirac, N. Gemelke, M. Haque and G. Juzeliu¯nas. M. Rizzi ofthebeamwaist. ThetwopathsdescribedinthetextgiveT ∼40 (solidblueline)andT ∼20(dashedblueline).Superimposedwhite has received funding from the European Community’s Sev- arrowsrepresentthedirectionsofthevector(F ,F ). Thisplotcan enth Framework Programme (FP7/2007-2013) under grant σ α serveforconceivingmoreintricatepathswiththehelpofoptimiza- agreement no. 247687 (IP-AQUTE). M. Roncaglia was par- tiontechniques. tially supported by the EU-STREP Projects HIP (Grant No. 221889) and COQUIT (Grant No. 233747). J.D. acknowl- edgessupportbyIFRAF,ANR(BOFLproject)andtheEuro- [21].Theamountofproducedmoleculesisindeeddirectlyre- peanUnion(MIDASproject). latedtothecorrelationfunctiong(2)(0),whichisalsoindirect correspondencewiththeinteractionenergy(cid:104)H (cid:105)/c (Fig.3b). 2 2 SincetheLaughlinstatebelongstothekernelofH ,itspres- Methods 2 ence will be signaled by a strong suppression of two-body losses. Moreover,inastrictanalogywithsolidstatephysics, LLLapproximation. Freezingthelongitudinaldegreesoffree- wecanimagineanexperimenttomeasureFQHEplateausin dombyalargeωz,thesingle-particleHamiltonian(1)canberewrit- physicalquantities.Namely,byvaryingtherotationaloffsetδ tenindimensionlessunitsas inthegiantvortexpreparationstageitispossibletochangeL Htrap=(2a†a+1)+δ(b†b−a†a), bystepsofN,i.e. movethepenetratingmagneticfluxinunits ofsinglequanta. Removingnowtheplug,thesystemwillfall with a†=−∂z+z¯/2 and b†=−∂z¯+z/2 in terms of z=(x+iy). inasequenceofincompressibleFQHEstates:thefinalg(2)(0) Eigenstates with angular momenta l =m−p and energies εm,p = isexpectedtodisplayplateausatdiscretevaluesasafunction 2p+lδ are built by iteratively applying the ladder operators a† 7 √ and b† on the vacuum ψ0,0≡(cid:104)z|0,0(cid:105)=e−|z|2/2/ π, i.e. |m,p(cid:105)= forLLLstates.Thecoefficientsin(11)accountforpairshavingtotal (a√†)p(b†)m|0,0(cid:105).Theexplicitwavefunctionsare angular momentum m0 with null component in the center of mass p!m! frame.Thisleadstoasparsematrixformfortheinteractions,withan averagefillingperrowgrowingas∼0.2·N2.92.ForN=10particles zm−p p (cid:18)p(cid:19)(cid:18)m(cid:19) ψm,p=ψ0,0·√p!m!q∑=0(−1)q q q q!|z|2(p−q), aannddLle=ssLthLaaun=on9e0,hwouerneCePdU∼-ti1mGeboRnAaMsitnoglseto-croertehe3GHHamzildteosnkiatonps processortodiagonalizeasingleinstanceoftheproblem. which can be rewritten in terms of confluent hypergeometric func- tions U(−p,m−p+1,|z|2). Energy levels for small δ’s are or- Condensate in the ring. Given the noninteracting energies (3) ganized in quasi-degenerate manifolds called Landau Levels (LL), withaminimuminm=(cid:96),theGSofH1=∑mεmdm†dm isgivenby labelledbytheinteger pandseparatedbyanenergygap2. When thegiantvortex(7). Theangularmomentum(cid:96)getsdepletedbythe dealingwithmany-bodyproblems,theusualapproximationistocut insertionoftwobodyinteractions(11)infavourofthenearestones downthesingle-particleHilbertspacetothelowestLL(LLL)p=0 (cid:96)+q,(cid:96)−q,withq(cid:28)(cid:96). ForacondensateofN0 particlesinm=(cid:96), wherewavefunctions(apar√tfromGaussianweight)areanalyticalin themostdominanttermsinH2are z, being ψm,0 =ψ0,0·zm/ m!. This is well justified and valid if c (cid:34) (cid:35) tthheercmhoerme,ictahlepLoLtenmtiiaxlinrgemdauienstowtheleliunntedrearctthioenLtLermgapinvtahleuest2ro;nfgulry- H2= 4√π23(cid:96) N02+N0q∑(cid:54)=02βq†βq+2β−†qβ−q+βlβ−q+β−†qβq† , correlatedFQHEregimeisnegligible[23]. HereweshowthattheLLLapproximationremainsvalidevenin wherenewoperators√βq=d(cid:96)+q havebeendefinedandtheStirling thepresenceofapluglaser(2).ThematrixelementswithintheLLL approximationn!≈ 2πe−nnn+12 employed. Thecouplingc2 gets are renormalizedby(cid:96)−1/2 asacon√sequenceofthewavefunctionlocal- (cid:18) 2 (cid:19)−(m+1) ization on a ring of length 2π (cid:96). Eliminating N0 by the number (cid:104)m,0|Uw(r)|m,0(cid:105)=α 1+w2 , (9) operatorNˆ =N0+∑qβq†βq,theoverallHamiltonianH1+H2reads wtuhrbicahtiopnrotvhiedoeryt.heTheenerrogtyatisohnifatlslydusyemtomUetwricatUtwheonfilrystcoorudpelresofstpateers- H = Nε(cid:96)+g2N2+∑q (cid:0)ε¯q+gN(cid:1)βq†βq withthesameangularmomentumanddifferentLLlabels: g (cid:16) (cid:17) (cid:18) 2 (cid:19)−p +2N∑q βqβ−q+β−†qβq† , (12) (cid:104)m+(cid:104)mp,,p0||UUww||mm++pp,,pp(cid:105)(cid:105) (cid:39)∼ ((cid:104)m√,m0/|Uww2)|mp(cid:104),m0(cid:105),·0|U1w+|mw,20(cid:105). ,(10) wthiethexgp=on2e√nctπ2i3a(cid:96)lcaonndsε¯tqan≡t.εU(cid:96)+nqde−rεth(cid:96)e≈p2roαpqo2s/e(des(cid:96)c)a2lfinogrsαm∝all(cid:96)q=anNd−e1is, increasingNenhancestheimportanceofinteractionswithrespectto DuetotheexponentialdecaywithminEq.(9),thepluglaseraffects single-bodyenergies. mainlylowangularmomenta,localizedinsideacircularareaofra- √ Thequadraticbosonicmodel(12)canbeexactlysolved[25]by dsiimusilarmto<thwe.LLFoLrolanreg,ethwusthaelmenoestrgpyressheirfvtinogf hthigehderistLaLncies2qubiete- theBogoliubovtransformationβq=uqηq−vqη−†qwithu2q−v2q=1, bywhichitreads tween adjacent LLs. The inter-LL terms in the illuminated region √ mwi<thwth2eaLrLeriendduecxedp.bFyotrhmeapllrye,faotnoerismalwlo−w2e,dvatoryuinsegLexLpLonaepnptrioaxlliy- H =Nε(cid:96)+g2N2+12 ∑(cid:0)Λq−ε¯q−gN(cid:1)+∑Λqηq†ηq. q(cid:54)=0 q(cid:54)=0 mationonlyforthosemsuchthatthematrixelements(10)are(cid:28)2. In practice among the exact eigenstates φm,0 of Htrap+Uw, those Due to the positiveness of Λq, the GS |Φ0(cid:105) (an approximation to thatdiffersignificantlyfromtheunperturbedstatesψm,0haveavery the exact GS |Ψ0(cid:105)) is given by the vacuum of quasiparticle ex- smalloccupationinthemany-bodysolution: theglobalLLmixing citations, ηq|Φ0(cid:105) = 0, ∀q. The quasiparticle spectrum is Λq = ∑tiomn[s(1p−res|e(cid:104)ψntme,d0|(φsmee,0F(cid:105)|i2g).(cid:104)1ncm).(cid:105)]isboundedby1%forallthesimula- (cid:113)(cid:0)ε¯q+gN(cid:1)2−g2N2 and the occupation number of the state q is v2= 1(cid:16)ε¯q+gN−1(cid:17). Thedepletionisthefractionofparticlesout- Numerics. LLLapproximationreducestheparticles’degreesof q 2 Λq freedomtoone,theangularmomentumm,andthemanybodysys- sidethecondensate, temisthendescribedbytheFockbasis|n n ...(cid:105).TheHilbertspace   advearitloabrleeafliozreanusimngerleicspawrtiitchloeuitsaffufercthtienrgc0tuht1etoco0rre≤ctmde≤sc2riNptiionnoor-f N−NN0 = N1 q∑(cid:54)=0v2q= 21Nq∑(cid:54)=0(cid:113)(cid:0)q2q+2+Q2Q(cid:1)22−Q4−1 (13) theLaughlinstateanditslowestexcitations; occupationnumberin higherm’sneverexceedsnegligibleamounts. Evenwiththisstrong with Q2 =gN(eλ)2/2α. The expression for v2 converges as q−4 q reduction,thedimensionofthelargestHilbertsubspaceconsidered forhighmomenta,andnoinfrareddivergenciesappearsinceangular forN particlesgrowsas∼1.75·100.74N−2 (∼4·105 forN=10). momenta are quantize√d in integers. For large Q, Eq.(13) becomes Within the LLL approximation, central contact interactions of the 1−N /N≈QlogQ/( 2N)whichvanishesforN→∞onlyifQ∝ 0 form(5)couldbewrittenintermsofasingleHaldanepseudopoten- N1−ζ,withζ >0.InthesamelimittheGSenergyturnsouttobe tial[24]: (cid:18) gN gQ g(cid:19) H2= 4cπ2 m0∑m1m221m0(cid:115)(cid:18)mm01(cid:19)(cid:18)mm02(cid:19)dm†0−m1dm†1dm2dm0−m2 . (11) andthechemicalpEot≈enNtial ε(cid:96)+ 2 −3√2+4 Here we introduced the second quantization operator dm†,p, which µ= ∂E ≈gN(cid:34)1−e(cid:18)gN(cid:19)1/2(cid:35), (14) createsaparticleinψm,p,andusedthesimplifiednotationdm†,0≡dm† ∂N 6 α 8 whoseleadingtermistheexpectedresultfromtheGross–Pitaevskii WithrespecttoH(0),thestate|Ψ1LL(cid:105)hasthesameenergyas|Ψ (cid:105) trap −2 0 approachintheLLL.Workingatconstantµ<2,asrequiredbyLLL andthecouplingbetweenthesetwostatesisthusthedominantes- √ approximation, implies a scaling c2 =CN−1/2, withC=2 π3µ caperoutefrom|Ψ0(cid:105). Toestimatethecorrespondingrate,wecon- (see Fig.3). Moreover, α ∝N implies that Q∝N1/2, ensuring the centrateonthelastpartoftheadiabaticevolutionandwetake|Ψ0(cid:105) vanishingofthedepletionfraction. Theradialconfinementisrather equaltotheLaughlinstate,whereL=N(N−1). Thecouplingma- strong, since the standard deviation ∆q grows onl√y as N1/4, as de- trixelementisthen ducedfromthecalculation(∆q)2=∑qq2v2q/N≈ 2Q3/(3N). The energy gap to the first excitation |Φ1(cid:105)=η1†η−†1|Φ0(cid:105) with Γ1−L2L=|(cid:104)Ψ1−L2L|Hu|Ψ0(cid:105)|= 2u(cid:114)∑m(cid:104)Ψ0|nm,0|Ψ0(cid:105)= u2√L≈ u2N. thesameLreads m √ (cid:113) 2 2µ ∆=Λ1+Λ−1=2gN (Q−2+1)2−1≈ Q Since|Ψ1−L2L(cid:105)and|Ψ0(cid:105)havethesametrappingenergy,thedetuning |E1LL−E | originates solely from the difference in interaction en- and vanishes as N−1/2 just as c , i.e. the energy scale of the final −2 0 2 ergy.MorepreciselyalowerboundforthisdetuningistheLaughlin Laughlin state (Fig.3). Within such Bogoliubov analysis, it is also gap∆ ≈0.1c .Hence,forN=10andc =0.5,thenon-resonant possibletodeterminethescalingofmanyotherinterestingquantities: conditLiaounΓ1LL(cid:28)2 |E1LL−E |issatisfiedi2fthedefectamplitudeu e.g.theinteractionenergy(cid:104)H2(cid:105)=c2∂E/∂c2scalesasN. ismuchless−t2han10−−22. For0u=10−2,weexpectthepopulationin Robustness against trap defects. The main experimental de- |Ψ (cid:105)todecayinatimeontheorderof1/Γ1LL∼20. 0 −2 fects that may hinder our protocol are a residual static quadrupole anisotropy u and an off-centering v of the plug beam, which are Theoff-centeringdefectHvexpandedatfirstorderinvconnects described by the single-particle potentials Hu =u(x2−y2)/2 and |Ψ0(cid:105) only with states |Ψα(cid:105) whose energy detuning is equal to 1. Hv=αexp(cid:2)−2[(x−v)2+y2]/w2(cid:3)−Uw, respectively. Bothterms Thislargedetuningisfavourabletominimisethedepartureratefrom break the rotation symmetry and couple manifolds corresponding |Ψ (cid:105).Moreover,theinfluenceofthisdefectfadesawaytogetherwith 0 to different total angular momenta. We consider first the cou- theplugduringtimeevolution. Hence,repeatingasimilaranalysis pling Hu since it turns out to have the largest impact for prac- asforHu,weeventuallyfindthattheconditionΓα (cid:28)|Eα−E0|is tical conditions. Its second-quantized expression can be written safelyfulfilledwhenv<1(inunitsofthetraplength),whichisnot Hu=Hu(0)+Hu(1)+Hu(2)with averystringentconditioninpractice. Hu(0) = 4u ∑(cid:112)(m+1)(m+2)(dm†+2,pdm,p+H.c.), m,p Hu(1) = 2u ∑(cid:112)m(p+1)(dm†−1,p+1dm,p+H.c.), m,p [1] Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, Hu(2) = 4u ∑(cid:112)(p+1)(p+2)(dm†,p+2dm,p+H.c.), C.E.&Cornell,E.A. ObservationofBose–EinsteinConden- m,p sationinaDiluteAtomicVapor. Science269,198–201(1995). wheredm†,p createsaparticleintheone-bodystateψm,p. Intheab- [2] Dsoadviiusm, Kat.oBm.s.etPhayl.s.RBeovs.eL–eEtti.n7st5e,in39c6o9n–d3e9n7s3at(i1o9n9i5n).a gas of sence of trap defects, we assume that the adiabatic approximation [3] Bloch,I.,Dalibard,J.&Zwerger,W. Many-bodyphysicswith is valid and that the system is at any time in the instantaneous GS |Ψ (cid:105)ofthetime-dependentHamiltonianH ,givenbythetrapping ultracoldgases. Rev.Mod.Phys.80,885(2008). 0 0 [4] Laughlin, R.B. AnomalousquantumHalleffect: Anincom- potentialplustheinteractionenergy.Thestate|Ψ (cid:105)hasangularmo- 0 pressible quantum fluid with fractionally charged excitations. mentumL,energyE andbelongstotheLLL(p=0). Weestimate the influence of Hu0by calculating perturbatively the depletion of Phys.Rev.Lett.50,1395–1398(1983). [5] Tsui,D.C.,Stormer,H.L.&Gossard,A.C. Two-dimensional the probability for finding the system in |Ψ (cid:105). The states that can 0 magnetotransportintheextremequantumlimit.Phys.Rev.Lett. bereachedaregivenatfirstorderbytheactionofthevariousterms 48,1559–1562(1982). in Hu on |Ψ0(cid:105). The first contribution Hu(0) induces a coupling to [6] Ezawa, Z. F. Quantum Hall Effects (World Scientific, Singa- otherLLLstateshavingangularmomentumL±2.Thecontributions pore,2008). Hu(1) andHu(2) connect|Ψ0(cid:105)withstateshavingbothangularmo- [7] Fetter,A.L. RotatingtrappedBose–Einsteincondensates. Rev. mentumL−2andbelongingtothefirstandsecondexcitedLL,re- Mod.Phys.81,647(2009). spectively.Wedenotethesenormalizedstatesas|Ψ1−L2L(cid:105)∝Hu(1)|Ψ0(cid:105) [8] Cooper, N. R. Rapidly rotating atomic gases. Advances in and|Ψ2−L2L(cid:105)∝Hu(2)|Ψ0(cid:105). [9] LPihny,siYc.s-J5.,7,C5o3m9p–t6o1n6,(R2.0L08.,).Jimenez-Garcia,K.,Porto,J.V.& In analogy with the textbook problem of Rabi oscillations, we Spielman,I.B. Syntheticmagneticfieldsforultracoldneutral find that the initial state |Ψ (cid:105) is protected from depletion towards 0 atoms. Nature462,628(2009). anothereigenstate|Ψα(cid:105)ofH0 withenergyEα iftheenergydetun- [10] Greiner,M.,Mandel,O.,Esslinger,T.,Ha¨nsch,T.W.&Bloch, ing|Eα−E0|ismuchbiggerthanthecouplingΓα=|(cid:104)Ψα|Hu|Ψ0(cid:105)|. I. QuantumphasetransitionfromasuperfluidtoaMottinsula- IntheoppositecasewhereΓα (cid:29)|Eα−E0|,thepopulationof|Ψ0(cid:105) torinagasofultracoldatoms. Nature415,39(2002). slims down as 1−sin2(Γαt). In such a resonant case, we should [11] Bretin,V.,Stock,S.,Seurin,Y.&Dalibard,J.Fastrotationofa haveΓα (cid:28)T−1whereT isthetotaltimeofevolution,toavoidany Bose–Einsteincondensate. Phys.Rev.Lett.92,050403(2004). significantleakagefromtheinitialstate|Ψ (cid:105). Oncethestirringhas 0 [12] Rosenbusch,P.etal.Criticalrotationofaharmonicallytrapped beenstopped,thedominantHamiltonianinthelaboratoryframecor- Bosegas. Phys.Rev.Lett.88,250403(2002). respondstothesingle-particlemotioninthetrappingpotential [13] Ryu,C.etal.ObservationofpersistentflowofaBose–Einstein Htr(a0p)=∑(m+p)dm†,pdm,p. condensate in a toroidal trap. Phys. Rev. Lett. 99, 260401 (2007). m,p 9 [14] Kasamatsu,K.,Tsubota,M.&Ueda,M.Giantholeandcircular ofanatomicMottinsulator. Nature467,68(2010). superflow in a fast rotating Bose–Einstein condensate. Phys. [21] Gemelke,N.,Sarajlic,E.&Chu,S.RotatingFew-bodyAtomic Rev.A66,053606(2002). SystemsintheFractionalQuantumHallRegime.ArXive-prints [15] Morris,A.G.&Feder,D.L. Gaussianpotentialsfacilitateac- (2010). 1007.2677. cesstoquantumHallstatesinrotatingBosegases. Phys.Rev. [22] Paredes,B.,Fedichev,P.,Cirac,J.I.&Zoller,P. 1/2-anyonsin Lett.99,240401(2007). smallatomicBose–Einsteincondensates. Phys.Rev.Lett.87, [16] Messiah,A. QuantumMechanics(North-Holland,1961). 010402(2001). [17] Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach [23] Morris, A. G. & Feder, D. L. Validity of the lowest-Landau- resonancesinultracoldgases. Rev.Mod.Phys.82,1225–1286 levelapproximationforrotatingBosegases. Phys.Rev.A74, (2010). 033605(2006). [18] Read, N.&Cooper, N.R. Freeexpansionoflowest-Landau- [24] Haldane, F. D. M. Fractional quantization of the Hall effect: level states of trapped atoms: A wave-function microscope. Ahierarchyofincompressiblequantumfluidstates. Phys.Rev. Phys.Rev.A68,035601(2003). Lett.51,605(1983). [19] Bakr, W. S., Gillen, J. I., Peng, A., Folling, S. & Greiner, [25] Fetter, A. L. & Walecka, J. D. Quantum Theory of Many- M. A quantum gas microscope for detecting single atoms in ParticleSystems(McGraw-Hill,1971). aHubbard-regimeopticallattice. Nature462,74(2009). [20] Sherson,J.F.etal.Single-atom-resolvedfluorescenceimaging

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.