ebook img

From planes to spheres: About gravitational lens magnifications PDF

0.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From planes to spheres: About gravitational lens magnifications

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed3February2008 (MNLATEXstylefilev2.2) From planes to spheres: About gravitational lens magnifications O. Wucknitz1,2⋆ 1JointInstituteforVLBIinEurope,Postbus2,7990AADwingeloo,TheNetherlands 2Argelander-Institutfu¨rAstronomie,Universita¨tBonn,AufdemHu¨gel71,53121Bonn,Germany Accepted2008January24.Received2007December21 8 0 0 2 ABSTRACT We discuss the classic theorem according to which a gravitational lens always produces at n leastoneimagewithamagnificationgreaterthanunity.Thistheoremseemstocontradictthe a conservationoftotalfluxfromalensedsource.Thestandardsolutiontothisparadoxisbased J ontheexactdefinitionofthereference‘unlensed’situation,inwhichthelensmasscaneither 4 beremovedorsmoothlyredistributed. 2 Wecalculatemagnificationsandamplifications(inphotonnumberandenergyfluxden- ] sity)forgenerallensingscenariosnotlimitedtoregionsclosetotheopticalaxis.Inthisway h theformalismisnaturallyextendedfromtangentialplanesforthesourceandlensedimagesto p completespheres.WederivethelensingpotentialtheoryonthesphereandfindthatthePois- - sonequationismodifiedbyanadditionalsourcetermthatisrelatedtothemeandensityand o r to theNewtonianpotentialatthe positionsofobserverandsource.Thisnewtermgenerally t reducesthemagnification,tobelowunityfarfromtheopticalaxis,andensuresconservation s a ofthetotalphotonnumberreceivedonaspherearoundthesource. [ Thisdiscussiondoesnotaffectthevalidityofthefocusingtheorem,inwhichtheunlensed situation is defined to have an unchangedaffine distance between source and observer.The 1 v focusingtheoremdoesnotcontradictfluxconservation,becausethemeantotalmagnification 8 (oramplification)directlycorrespondstodifferentareasofthesource(orobserver)spherein 5 thelensedandunlensedsituation.Wearguethataconstantaffinedistancedoesnotdefinean 7 astronomicallymeaningfulreference. 3 Byexchangingsourceandobserver,weconfirmthatmagnificationandamplificationdif- . feraccordingtoEtherington’sreciprocitylaw,sothatsurfacebrightnessisnolongerstrictly 1 0 conserved.Atthislevelwealsohavetodistinguishbetweendifferentsurfacebrightnessdefi- 8 nitionsthatarebasedonphotonnumber,photonflux,andenergyflux. 0 Keywords: Gravitationallensing–Cosmology:miscellaneous : v i X r a 1 INTRODUCTION leadstoanincreaseofthetotalnumberofphotonsfromthesource. Thiswouldbeincontradictionwiththefactthatlensingcanneither Already Einstein (1936) calculated the magnification of a back- createnordestroyphotons.ItwasalreadypointedoutbySchneider ground star lensed by a foreground compact mass and found the (1984)thatsuchaninterpretationisnotcorrect.Inordertocompare classicresultforthetotalmagnificationofbothimages,whichde- thelensedwiththeunlensed situation,itisessentialtodefinethe creasesforlargeimpactangles(farawayfromtheopticalaxis)but latterinameaningfulway,whichisfarfromtrivial.Ingeneralrel- alwaysstaysaboveunity. ativity,thelenswillslightlydistortthegeometryofthewholeUni- Atthattime,gravitationallensingwasregardedasatheoret- verse,sothatitisplainlyimpossibletoaddalenswithoutchanging ical curiosity with very littlechance of leading to observable ef- theconfigurationofsourceandobserver.The‘referencesituation’ fects.Muchlater,afterthefirstactuallenssystemshadbeenfound, in the standard explanation is the one in which the mass of the Schneider (1984) presented and proved a theorem stating that a lensisredistributedevenlyovertheUniverse.Itcanbeshownthat gravitationallenswitharbitrarymassdistributionwillalwayspro- thecomparisonfindsnonetincreaseofphotonnumber then(e.g. duceatleastoneimagewithamagnificationgreaterthan1.Since Weinberg1976).Thereasonforthisisthattwodifferentlylensed thetheoremisthoughttobevalidforallconfigurationsofsource, scenariosarecompared. lens and observer, one might naively think that this necessarily Some level of uneasiness remained in the minds of several authors,becauseonemaythinkofsituationsinwhichthegeneral ⋆ E-mail:[email protected] validity of the theorem would still lead to a violation of photon (cid:13)c 0000RAS 2 O. Wucknitz number conservation. Avni&Shulami (1988) calculated the am- equationismodifiedbyanadditional sourceterm,whichensures plificationcausedbyapoint-masslensbydroppingthesmall-angle thevalidityofGauss’theoremontheclosedsphere. approximation of light rays with respect to the optical axis (de- The exact form of magnification matrices on the sphere for finedbyobserverandlens),whichisgenerallyusedinthestandard finite(andpossibly large)deflectionanglesisinvestigatedinAp- formalism. Onemight think thatfar fromthe optical axisthede- pendixB.Forourcurrent discussionweonlyneedtheresultthat flectionbecomessoweakthatthefullcalculationwouldaddonly themagnificationmatrixintermsofsecond-orderderivativesofthe higher-ordertermswhicharenotrelevantintheend.Still,slightly potentialdiffersfromtheusualformonlytosecondorderinthede- surprising, theseauthors findthat theamplificationactuallysinks flectionangle,sothatthisdifferencecanbeneglected. below1,whichcorrectsfortheamplificationexcessclosetotheop- In Sec. 5 we extend our calculations to finite values of the ticalaxis.Avni&Shulami(1988)workedwithapoint-massmetric sourcedistanceandexplicitlycalculatedeflectionanglesandmag- inSchwarzschildcoordinates,andfixedtheradialcoordinaterela- nificationsforpoint-masslenses.Byadaptingthepotentialtheory tive to the lens for the comparison of lensed and unlensed situa- tothissituation,wefindthatthecorrectiontermsinPoissonequa- tion.Schneider,Ehlers&Falco(1992)questionthevalueof such tionandmagnificationaredirectlyrelatedtotheNewtonianpoten- a comparison. They argue that there is generally no unique way tialatthesourceandobserver. tocomparemeanfluxesindifferentspace-times.Nevertheless,ap- ThesubjectofreciprocityiscoveredinSec.6,whereweex- proximatingthecalculationsofAvni&Shulami(1988)forregions changetheroleofsourceandobservertorelatemagnificationwith closetotheopticalaxiswoulddirectlyleadtothetangentialplane amplification.Thesetwoarenotthesameanymore,sothatthesur- approachofSchneider(1984).Itisnotentirelyclearwhy(ifatall) facebrightnessisnolongerconservedifwedefineitinastandard thetheoremlosesitsvalidityfarfromtheopticalaxis. physicalsense.Thisisadirectconsequenceofthereciprocitytheo- Jaroszyn´ski&Paczyn´ski (1996) make similar calculations, remofEtherington(1933)andofthespace-timemodificationatthe butkeepthemetricdistancebetweensourceandobserverconstant positionofsourceandobserver,causedbythegravitationalfieldof for the comparison. They find that the effect of the lens changes thelens.Inanticipationofthisresultwetrytomakeacleardistinc- thetotalareaofthespherearoundthesourceandcanthus(without tionbetweenamplificationandmagnificationfromthebeginning. contradictingphotonconservation)leadtochangesintheaveraged AfterabriefdiscussionoflighttraveltimesinSec.7wesum- amplification.Theyalsomakeadistinctionbetweenmagnification mariseanddiscussourresultsinSecs.8and9. and amplification, which becomes relevant at the accuracy levels requiredfarfromtheopticalaxis. Noneofthesepublicationsactuallypresentsthemagnification tosecond order (intermsofthedeflectionpotential) forarbitrary 2 PLANARLENSINGTHEORY anglestotheopticalaxis1.Theyeitherapproximateforsmallan- 2.1 Basics gles or include only first-order terms. One aim of our work is to extendthecalculationstoincludesecond-ordertermsalsoforlarge Hereweonly recall themost relevant aspects. Thecomplete the- impactangles.Evenmoreimportantisthediscussionofappropriate ory can be found elsewhere (e.g. Schneideretal. 1992). Close to unlensedsituationstoactasareferenceinordertodefinemagnifi- anopticalaxis(whichcanbedefinedarbitrarily,conventionallyby cationsandamplifications. observerandlenscentre),thegeometryofagravitationallenssys- We will also develop the formalism to treat off-axis lenses temcanbeprojectedonthetangentialplaneofthecelestialsphere. similarly to the standard small-angle approximation and learn Thisleadstothenotionofthesourceplaneforthetruesourcestruc- which part of the proof of the magnification theorem cannot be tureandthelensorimageplanefortheobservedlensedimage(s). generalisedforthissituation.Thiswillbedoneforarbitrarymass Intheseplaneswedefinetwo-dimensionalunit-lessvectorswhich distributionsandnotonlyforpoint-masslenses. are based on angular coordinates on the sphere. We now restrict Theoutlineofthispaperisasfollows.WestartinSec.2with the discussion to static, ‘thin’ lenses, where the light is deflected abrief review of thestandard planar lensing theory, which isde- onlyveryclosetothelensplane.Wecantheninterprettheaction scribed in a tangential plane at the position of the lens. This in- ofthelensasapotentialtime-delay,whichaffectsthelightwhenit cludesthemagnificationtheoremandasimpleversionofitsproof. crossesthelensplane.Thisdirectpotentialdelaycausesadeflec- InSec.3weexplainourapproachofdiscussingtheapparentmag- tionandthuschangesthegeometricallightpath,whichcreatesan nification in terms of solid angles. In this way we can avoid the additionalgeometricaldelay.Thetotaldelay∆tisusuallywritten explicit definition of an unlensed reference situation. Solid angle intermsoftheFermatpotential,whichcomprisesthegeometrical mustalwaysintegrateto4π,sothatthemagnificationtheorem(in andpotentialpartsinanormalizedversion:2 theseterms)cannotholdeverywhere.Thisdiscussionisequivalent (θ θ )2 tcoonasrteafnetr.encesituationinwhichtheareaofthesourcespherestays φθs(θ)= −2 s −ψ(θ) (1) D D Section4.1comprisescalculationsforapoint-masslensatin- ∆t= d sφθ (2) cD s finity. We explicitly find that the magnification sinks below 1 far ds fromtheopticalaxis.Generalmassdistributions(stillwithsource Here the vectors of the observed image and true source position atinfinity)arediscussedinSec.4.2.Therewedevelopthepoten- areθ =(θ ,θ )andθ ,respectively.Thedistanceparametersare x y s tialtheoryoflensesonthesphereasanextensionofthestandard angular-sizedistancesbetweenobserverandlens/source(D ,D) d s potential theory in the tangential plane. We find that the Poisson and between lens and observer (D ). For simplicity, we assume ds 2 Thepotentialisdefinedmoduloanarbitraryadditiveconstant.Wewill 1 Closetotheopticalaxis,thesecond-ordertermsbecomedominantfor generallyneglectthisconstant,evenifitdiverges.Withinequations,how- compactmasses. ever,consistentconstantsareused. (cid:13)c 0000RAS,MNRAS000,000–000 Fromplanestospheres 3 thatthelensisembeddedinaglobalMinkowskimetric.Inacos- directions3,nomatterwherethelensispositioned,raisestheques- mologicalsituation,Eq.(2)wouldhavetobescaledbyaredshift tionhowthiscanbeconsistentwithconservationoftotalflux.This factor1+z ,butremainsvalidapartfromthat. issueisdiscussedbySchneider(1984),Schneideretal.(1992)and d We define the apparent deflection angle α to fulfil the lens referencestherein.Thebasicargumentisthatonehastothoroughly equation definetheunlensedsituation,relativetowhichthemagnifications are calculated. Adding a lens modifies the geometry of the Uni- θ =θ α(θ) . (3) s − verse,sothatthecomparisonisnottrivial.Thiscanbeillustrated byathoughtexperimentinwhichweshrinkthesizeoftheUniverse Deflectionandtime-delayarerelatedbyFermat’stheorem:Images bysomefactor.Thiswouldmoveallsourcesclosertoallobservers, formatstationarypointsofthetime-delayfunction.Thesecanbe sothattheywouldallseeanincreasedfluxdensity.Still,thereisof minima,maximaorsaddle-points.Criticalimageswithdegenerate coursenocontradictionwithenergyorfluxconservationatall. Hessianmatrix(seebelow,e.g.Einsteinringsofpointsources)are Animportantexamplefortotalnetmagnificationsisthecase unstableandshallnotbediscussedhere.Wethustakethederivative of a point-mass lens, where the calculations were presented long oftheFermatpotentialinEq.(1)andsubstitutethelensequation beforethegeneraltheorem(Einstein1936;Refsdal1964).Theto- (3)tofindthatthedeflectionangleisthegradientofthepotential, talmagnification of thetwo images4 asafunction of theangular α(θ)=∇ψ(θ) . (4) separationθ betweenlensandsourceisgivenbythestandardex- s pression If we calculate the potential from the mass distribution, we can provethatitobeysaPoissonequation θ2+2m µ = s , (10) tot ∇2ψ(θ)=2κ(θ) . (5) θs θs2+4m whichisgreaterthanunityeverpywhere.Herewehavedefined TheconvergenceκistheprojectedsurfacemassdensityΣinunits ofthecriticaldensity m= 4GM Dds 4GM (forD D ,D D), c2 DdDs → c2Dd s ≫ d ds ≈ s Σ = c2 Ds . (6) (11) c 4πGD D d ds which is the square of the Einstein radius. We can calculate the Inmoredetail,wecanexpresstheHessianmatrix,consistingofthe excessmagnificationbyintegratingoverthetangentialplane: second-orderderivativesofψ,intermsoftheconvergenceandthe two-dimensionalexternalshearγ =(γx,γy): ∆µ= d2θs(µtot 1)=2πm (12) − ZZ ψ ψ κ+γ γ H= xx xy = x y (7) Theorderofmagnitudeofthisexcessisplausible,becausethelens ψ ψ γ κ γ „ yx yy« „ y − x« producessignificantadditionalmagnifications(oftheorder1)over aregioncorrespondingtotheEinsteinringwithradius√m. Wewilllaterfindthatthesolutionofthemagnificationpara- 2.2 Themagnificationtheorem dox hastodowithtermsof µ−1 that arelinear inthedeflection. ThistheoremwaspresentedbySchneider(1984)andisdescribed This can be anticipated by the fact that the excess in Eq. (12) is inabroadercontextbySchneideretal.(1992).Hereweonlywant alsolinear inm. Counting only thetermslinear inthe deflection to make a plausibility proof, without claiming to be fully mathe- (linearinψ,κ,γ)ofEq.(9),wefind maticallyrigorous.ThelocalmagnificationmatrixMistheinverse µ−1 1 H H =1 ∇2ψ=1 2κ . (13) Jacobianofthelensmapping,Eq.(3): ≈ − xx− yy − − ∂θ Thefirst-ordermagnificationcanonlybereducedbelow1ifeither M−1 = s =1 H (8) κisnegativeorthePoissonequationismodifiedinanappropriate ∂θ − way.Wedoexpectthelattertohappenwhenweleavethetangential Thescalarmagnificationµisthedeterminantofthismatrix, planeandconsiderthesphere.Thedivergence(sourcedensity)of µ−1 =det(1 H)=(1 κ)2 γ2 , (9) thedeflectionfield∇·α = ∇2ψcannotbepositiveeverywhere, − − − becauseofGauss’law.Theresimplyisnochanceforthefluxofα withγ = γ .Thesignofµdefinestheparityoftheimage. toescapefromtheclosedsphere,sothattheintegrateddivergence | | For large θ, the Fermat potential will be dominated by the mustvanish. firstterminEq.(1)forallrealisticmassdistributions,i.e.itgrows quadraticallywithθ.Localmassconcentrationswillproducemin- ima in ψ that can diverge for point masses, but can not lead to 3 SOLIDANGLES positivediscontinuouspeaksinψ.Itisthusplausiblethatatleast onelocalminimumofφexists.Thispointisasolutionofthelens Toavoidmostofthecomplicationsofarbitrarydefinitionsforref- equation and corresponds toareal image. Being aminimum, the erence situations, we want to interpret the apparent paradox in a HessianoftheFermatpotential,1 H,mustbepositivedefinite. − Theeigenvaluescanbeeasilyderivedtobe1 κ γ,whichmust − ± 3 Forthemomentweassumetheequivalenceofmagnificationandampli- thusbothbepositive.Ifweaddtheconditionthattheconvergence fication,whichcanbeproveninthisframework. ordensityκisnon-negative,wefind0<µ−1 <1.Inotherwords, 4 ArealSchwarzschildlenswouldadditionallyproduceaninfinitenumber this image has positive parity and a magnification µ > 1. As a ofimagesveryclosetothelens(e.g.Virbhadra&Ellis2000).Something result, the total magnification of all images corresponding to one similar,althoughnotquantitatively thesame,happenswiththedeflection sourcepositionisalwaysgreaterthanunity. angleaccordingtoEq.(24).Theseimagesareextremelydemagnifiedand Thefactthatlensingincreasestheobservedfluxdensityinall canbesafelyneglectedhere. (cid:13)c 0000RAS,MNRAS000,000–000 4 O. Wucknitz differentway.Insteadofdiscussingfluxes, wewanttoinvestigate how solid angles are mapped from the observed image sphere to thetruesourcesphere,whichweputataninfinitedistance,where the metricperturbation by the lens can be neglected. Using solid anglesinsteadofareasonthesourcesphere,wecanavoidapossi- blescalingofthetotalarea.Thetotalsolidanglealwaysremains 4π. Wedonotrestrictthediscussiontosmallregionsaroundthe opticalaxis(correspondingtothetangentialplane)butinsteadal- lowforarbitraryimpactangles. 3.1 Conservationofsolidangle Westartbyintegratingthetotalapparentsolidangleontheimage sphere andtransformthisintoanintegral over thesource sphere. For this we assume that all lines of sight end somewhere on the Figure1.Deflectedlinesofsightwiththeobserverinthecentreandthe sourcesphereandthateverypartofthesourcespherecanbeseen sourcesphereascircle.Theverticallinedefinestheopticalaxis,thehatched circleshowsthelens.Theregularlyspaceddotsonthesourcespherelabel in at least one direction, i.e. we neglect possible horizons which thecorrespondingimagepositions(straightprojectionsofthelinesofsight). wouldaddhigherordercorrections. 4π= dΩ(θ)= dΩ(θ )µ (θ ) (14) s s tot s magnification.ThemagnificationaccordingtoEq.(15)definesthe I I ratioofsolidanglesofaconeoflightraysmeasuredbytheobserver dΩ µtot(θs)= µ(θ) = dΩ (θ) (15) andatinfinity.Inastronomyweareinterestedintheratioofsolid θX(θs)˛ ˛ θX(θs)˛˛ s ˛˛ anglesofoneandthesamesourceseenwithandwithouttheaction ˛ ˛ ˛ ˛ ofthelens.Naively,onewoulddefinetheunlensedreferencesitu- Thesumistakenover allimages correspon˛ding tot˛herespective ationinsuchawaythatthedistancebetweenobserverandsource source position. We learn that the total magnification, defined in iskeptconstant,butdistancesarenotuniquelydefinedinacurved termsofsolidangleelements,averagedoverthesourcespheremust space-timesothatthisapproachisnotunique.Thepictureofsolid beequaltounity.Evenifitisvalidclosethetheopticalaxis,the anglesandaverylargesourcespherecanalsobeinterpretedasa magnificationtheoremcannotholdinotherregionswheretheex- referencesituationinwhichthetotalareaofthesourcesphereisthe cesshastobecompensated. sameinthelensedandunlensedsituation.Fluxconservationthen Weconcludethatifthemagnificationtheoremwouldholdin demandsameanmagnificationofunity,sothatgeneralvalidityof thissituation, wewould haveareal paradox that had to betaken themagnificationtheoremcannotbeexpected. seriously. Wewilllearnlaterthatthemagnificationtheoremdoes We want to postpone the discussion of an appropriate refer- indeedbecomeinvalidforlargeimpactangles.Intheseregionsthe encesituationbyredefiningtheproblem.Itiswell-knownthatthe primaryimage isonly veryweakly deflected. Any additional im- gravitational light deflection can be described as the action of a ageswillbestronglydeflected(invalidatingtheweak-deflectionap- refractivemediumthatfillsanEuclideanspace,whosecoordinates proximation),buthighlydemagnified.Inthefollowingdiscussion areidentifiedwiththoseusedinthestandardformoftheweak-field wewillmostlyneglecttheseimages,whichallowsustoconsider metricequation (16). Inthismodel, theunlensed situationwould the magnification as a function of image positions instead of the obviouslybetheonewithalldistancesunchanged buttherefrac- totalmagnification asafunction of sourceposition. Fig.3 shows tivemediumremoved.Solidanglescanthendirectlybeidentified thatthissimplificationisjustified. withareasonthesourcesphere,sothatthereasoningabout solid Figure 1 illustrates why the magnification theorem can be anglesinSec.3.1inevitablyleadstoafailureofthemagnification validaround the optical axisbut not everywhere. Weseethat the theoreminthissituation.SincethiscontradictstheresultofSec.2, lens increases the density of lines of sight on the source sphere even though the formalism isexactly the same, we have to iden- aroundthe(forward)opticalaxis,correspondingtoamagnification tifyandabandontheinadmissibleassumptionsorapproximations. greaterthanunity.Onthetangentialplane,thiswouldbepossible Oncetheformalismhasbeengeneralised,wecancomebacktothe everywhere,becauselinesofsight(orsolidangleonthesky)can definitionofreferencesituations. be‘borrowedfrominfinity’.Incontrasttothis,thetotalsolidangle AsanalternativetorefractionwecanrefertotheNewtonian mustbeconservedonthecompactsphere.Thisnecessarilyleadsto pictureofthedeflectionofmassiveparticlesmovingwiththespeed magnificationslessthanunitysomewhere,seeninthelowerparts of light. Modulo a factor of 2, the deflection follows exactly the of the diagram. Note that, for simplicity, a lens without multiple same law as in general relativity, but the geometry of space and imaging isshown here. Thelensmassdistributionwaschosen in timearenotaltered. suchawaythatthemagnificationscanbeseenalreadyinthistwo- dimensionalcross-sectionalview.Generallythedensityoflinesof sightonlyshowsinthefullthree-dimensionalgeometry. 4 SOURCESATINFINITEDISTANCES 3.2 Referencesituationsandtherefractionanalogue 4.1 Point-masslens Wenowknowthatforsolidangles,measuredforsourcesatinfin- Weknow thatclosetotheoptical axisthemagnificationtheorem ity, the magnification theorem cannot hold. However, we have to holds.FromthediscussionofFig.1,weexpectthatitbreaksdown beveryspecificaboutthesituationsthatarecomparedtodefinea atlargerimpactangles.Thereforewehavetogeneralizetheusual (cid:13)c 0000RAS,MNRAS000,000–000 Fromplanestospheres 5 formalismtoallowsourcepositionsfarfromthelenscentre.How- α ever,wewillkeeptheweak-fieldapproximationsothatdeflection anglesstillhavetobesmall. θ We describe the lens(es) as small perturbation of an asymp- s totic Minkowski metric instead of a more realistic Robertson- z x Walkermetric.Thissimplifiesthetreatmentwithoutobscuringthe M θ apparent magnification paradox or its solution. We use the static D weak-fieldmetricinisotropiccoordinates,sothatlocallyobserved d angles (and solid angles) can bederived directlyfrom thespatial Figure2.Geometry ofthe light deflection withasource atinfinity. The coordinatesr = (x,y,z).IntermsoftheNewtonianpotentialΨ, anglesθ,θsandαarepositiveinoursignconvention.Hereandinallfol- thelineelementcanbewrittenas lowinggeometricalconsiderations,wepretendthatspaceisEuclidean(and space-timeMinkowski)andtreatthelightdeflectionasanon-geometrical 2Ψ 2Ψ ds2 = 1+ c2dt2 1 dr2 . (16) effect.Thefiguresrepresentthegeometryofthecoordinatesusedtodefine c2 − − c2 themetricinEq.(16).Isotropyofthemetricensuresthatallanglescorre- „ « „ « spondtoreallocallyobservableangles.Straightlinesinthefiguresarenot Thisleadstothegeodesicequationforlightinfirstorderapproxi- necessarilygeodesicsinrealspaceorspace-time. mation r˙2 r¨= 2 ∇⊥Ψ , (17) 4.1.2 Potential − c2 where∇⊥ denotesthetransversalpart(relativetor˙)ofthegradi- ThedeflectionangleinEq.(24)canbewrittenasthederivativeof ent,anddotsstandforderivativeswithrespecttotheaffineparam- apotentialψ,whichisdefinedonthesphereas eter.Withinfirstorder(inΨ),thegeometricallengthorlocaltime θ m canalsobeusedequivalently. ψpm(θ)=mlnsin2 = 2 ln(1−cosθ)+const . (25) 4.1.1 Deflectionangle 4.1.3 Magnification WewanttocalculatethedeflectionangleofapointmassM with Consider as source a thin concentric annulus around the lens, as a source at infinity. We restrict ourselves to the plane defined by seenbytheobserver.Withradiusθsandwidthdθs,thesolidangle lens, source and observer, which contains the complete light ray. is dΩs = 2πsinθsdθs. This annulus will be observed at radius The coordinates have their origin at the observer, z is measured θ with width dθ and solid angle dΩ = 2πsinθdθ. We separate alongtheunperturbedlineofsight,xintheperpendiculardirection themagnificationintothetangentialandradialparts,MTandMR, (Fig.2).Thedeflectionangleisdefinedaccordingtothestandard respectively: formofthelensequation(3).Thelens,locatedat dΩ µ−1 = s =M−1M−1 (26) dΩ T R x = D sinθ , z =D cosθ , (18) 0 d 0 d − sinθ sin(θ α) M−1 = s = − =cosα cotθsinα (27) producesaNewtonianpotentialof T sinθ sinθ − dθ dα GM M−1 = s =1 (28) Ψ(x,z)= . (19) R dθ − dθ − (x x0)2+(z z0)2 m θ − − =1+ sin−2 (29) ThedeflectionangleiscalpculatedbyintegratingEq.(17)alongthe 4 2 unperturbedlineofsight.Itisdefinedtobepositivefordeflection The magnification we get from Eqs. (26–28) with the deflection inthenegativez-direction.Weusezasaffineparameter: anglefromEq.(24)isplottedinFig.3.Thedeflectionangleandits derivativearecorrectonlytofirstorderinm,sothatthefirstorder ∞ α= ∆x˙ = dzx¨(x=0,z) (20) isalsosufficientfortheradialandtangentialmagnifications5.Up − − Z0 tothisorder,wefind 2 ∞ = c2 Z0 dz∇⊥Ψ(x=0,z) (21) MT−1 =1−αcotθ , (30) 2GM ∞ −3/2 m m2 cosθ = x dz x2+(z z )2 (22) µ−1 =1+ . (31) − c2 0 0 − 0 2 − 4 (1 cosθ)2 Z0 h i − = 2GM 1+z0 x20+z02 −1/2 (23) For large θ, the m/2 term in Eq. (31) is dominant, whilst in the − c2 ` x0 ´ normallensingregime,them2termbecomesmoreimportant.Ex- m1+cosθ m θ = = cot (24) 2 D sinθ 2 2 d 5 Thisis not true forthe scalar magnification µ(the determinant ofthe Inthelimitofsmallθ,i.e.closetotheopticalaxis,werecoverthe magnificationmatrix),wherethesecondorderterms,resultingfromcombi- standardresultα=m/θ,withthedefinitionofmfromEq.(11). nations offirstordertermsinMT andMR,areresponsibleforthemag- Notethatforlargeθthedeflectionisnotconfinedtoregions nifications in the classical lensing regime close to the optical axis. It is smallcompared toDd,but takesplaceover arange x0. This ironic that our generalisation of the standard formalism introduces addi- ∼ | | meansthatnoteventhepoint-masslenscanbeconsideredasthin tional termsoffirstordertoµ,whilstthedominating classical partisof anymore. secondorder. (cid:13)c 0000RAS,MNRAS000,000–000 6 O. Wucknitz 3 µ µ −1 10 tot tot µ+ µ+−1 2 −µ− −µ− 1 1 0 −11[10] -1 -2 -3 0.1 1 10 0 500 1000 1500 2000 2500 θs [arcsec] θs [arcsec] Figure3.Magnification ofbothimages(positive andnegative parity) andthetotalmagnification asafunction ofthesourcepositionforalensofm = (1′′)2=2.35·10−11.Forsmallangles(left),themagnificationisindistinguishablefromtheclassicresult.Farfromtheopticalaxis(right),themagnification approaches1−m/2insteadof1.Themagnificationtheoremdoesnotholdinthisregion.Thetotalmagnificationandthemagnificationofonlythepositive parityimageareindistinguishableforverylargeimpactangles.Thisjustifiesourapproachofnotdiscussingthetotalmagnificationofallimagesbutonlythat oftheprimaryimage(µ+). pandedinpowersofθ,wefind tofind µ−1 =1+ m2 − mθ42 1+O θ2 . (32) ψ(θ)= 21π dΩ′(θ′)σ(θ′) ln 1−θ·θ′ +const . (36) I The corrections in the small-angle rhegime (`last´tierm) are not rel- Inthetangentialplane,thiscorrespon`dstothein´tegral evant in our context. The isotropic correction m/2, on the other 1 hand, leads to violations of the magnification theorem. Far away ψ(θ)= d2θ′σ(θ′) ln θ θ′ +const . (37) π | − | from the optical axis, the magnification sinks below unity. The ZZ transitionregion withamagnification of 1isaround θ = √42m, Eventhoughthisformalismisvalidforarbitrarymassdistributions, approximately the square root of the Einstein radius. For typical itiscorrectonlytofirstorderinρ.Thismeansitcannotbeusedfor galaxy lensing cases, this is a few arc-minutes from the lens, far multi-planestronglensing,wherethechangeofimpactparameter awayfromthestrong-lensingregimebutstillatasmallangle.For inonelensplaneasaresultofthedeflectioninanotherplanebe- microlensing,thetransitionregionisevencloser. comesrelevant. Thesmallcorrectionoftheorderm(10−10 intypicalgalaxy scalelenses)iscompletelyirrelevantforallpracticalcalculations. 4.2.2 Poissonequation Nevertheless,thistermisresponsiblefortheconservationoftotal flux or solid angle. Integrated over the complete celestial sphere, ThePoissonequationforthesphericalpotentialψcanbederived itleadstoadeficitof2πm+ (m2),whichexactlycompensates withverylittleformalcalculations.WedeterminethefluxF ofthe O fortheexcessfoundinEq.(12).Becausethemodificationisoffirst deflectionfieldαthroughacircleofradiusθaroundthepointmass orderinm,thefollowingdiscussionwillconcentrateonfirst-order m,correspondingtoσ(θ) = πmδ2(θ).Thisistheproductofα effects. withthecircumferenceofthecircle, F(θ)=α(θ)2πsinθ=πm(1+cosθ) . (38) 4.2 Generalmassdistributionsonthesphere In the limit of θ 0, this startswith F(0+) = 2πm and then 4.2.1 Potential decreaseslinearly→withtheenclosedareaAofthecircle: Knowingthepotentialforapoint-masslensfromEq.(25),wecan F(θ)=2πm mA(θ) A(θ)=2π(1 cosθ) (39) easily generalize for arbitrary mass distributions, defined by the − 2 − three-dimensionalmassdensityρ(r): WeknowfromGauss’theoremthatthisfluxequalstheintegrated 4G ρ(r′) ∡(θ,r′) divergence of the field(= Laplacian of thepotential), so that we ψ(θ)= c2 d3r′ r′ lnsin 2 (33) canwritethePoissonequationas ZZZ = 2cG2 d3r′ ρ(rr′′)ln 1− θr·′r′ +const (34) ∇2ψpm(θ)=2πmδ2(θ)− m2 . (40) ZZZ „ « Theδtermisthesameasonthetangentialplane.Themassactsin The direction is denoted by the unit vector θ with r = θr. We theusualwayassourceforthedeflectionfield.However,incontrast separatetheradialintegrationfromthetangentialpartonthesphere byintroducingthenormalizedsurfacemassdensity6 to the tangential plane, the sphere is closed, so that sources and sinksofthefieldmustcompensateeachother;thefieldlinescannot 4πG ∞ σ(θ)= drrρ(r) (35) extend to infinity. Without the second term in Eq. (40), the field c2 Z0 lineswould continue and meet at θ = π where theywould form anadditionalsingularityofmass m.Instead,thefield‘decays’to 6 Notethatinthisradialprojectiontheinfluenceofmasselementsatdis- ensureavanishingtotalintegrated−∇2ψ. tancesrdoesnotscalewithrbutwith1/r,seeEqs.(33–34). For an arbitrary mass distribution σ, the Poisson equation Fora thin shell around the observer at acertain distance Dd, wefind reads σ(θ) = (4πG/c2)DdR drρ(r) = Σ/Σc asinthestandardformalism. ∇2ψ(θ)=2[σ(θ) σ]=:2κ(θ) . (41) ComparewithEq.(6). − (cid:13)c 0000RAS,MNRAS000,000–000 Fromplanestospheres 7 Welearnthatnotσitselfisthesourceofthefieldbutthedifference ofσandthemeansurfacemassdensity z σ= 1 dΩ(θ)σ(θ) . (42) Ds α x 4π S O I InAppendixA1weshowhowthesphericallensingpotential Figure4.Theapparentdeflectionangleαisdefinedasthedifferencebe- canbewrittendirectlyasintegralovertheNewtonianpotential.It tweentheapparentandtruesourceposition.Changesofthedirectionofthe isthethree-dimensionalPoissonequationthatleadstothefirstterm lightpathwillthereforeaffectαscaledwithDds(z)/Ds. inEq.(41).ThesecondtermisrelatedtotheNewtonianpotential atthepositionoftheobserver.Thistellsusthatthedeviationsfrom thestandardformalismcanberelatedtolocaldistortionsofspace- sothatwecannotinfermagnificationsgreaterthanunityfromthe time. signsoftheeigenvalues.Eventhoughthedensity(evenincompar- isonwiththereferencesituation) isstillstrictlynon-negative, the 4.2.3 Themagnificationmatrix convergence is not, which invalidates one of the assumptions for theproofofthetheorem. The(inverse)magnificationmatrixisgivenbytheJacobianofthe Recall that,inorder todefine afirmfoundation forthisrea- lensmapping.Onthetangentialplane,theJacobianofEq.(3)leads soning, we refered to non-relativistic situations with unperturbed directlytotheHessianofthepotential,seeEq.(8).Thesituationis geometryinwhichthedeflectioniscausedeitherbyrefractionor morecomplicatedonthecurvedsphere,wherefinitedisplacements by Newtonian deflection. If wenow return tothe relativisticsce- cannotbetreatedasvectors.InAppendixBwecalculatethemag- nariobutdefinetheinfinitelylargesourcesphereinsuchawaythat nificationmatrixforarbitrarydeflectionfunctionsα(θ),including theareaisthesameforthelensedandunlensedsituation,wecome largedeflectionangles. Intermsofthissection,wherethedeflec- toexactlythesameconclusionforthatcase. tionangleαisthegradientofapotentialψ,theexactmagnification matrixfromEq.(B9)canbewrittenincoordinates( , )parallel k ⊥ andperpendiculartothenegativedeflectionangle α,as − 1 ψ ψ − k;k − k;⊥ 5 SOURCESATFINITEDISTANCES M−1 = . (43) 0−ψ⊥;ksinαα cosα−ψ⊥;⊥sinαα1 Inthefollowingweallowforsourcesatfinitedistances.Inthissit- @ A uation,themetriconthesourcesphereismodifiedbythelens,so Thelowerindicesofψdenotethesecond-order(covariant)deriva- thatthepreviouslyusedapproachisnotpossibleanymore,butas- tiveswithrespecttothecoordinateaxes.Thecorrectionsincosα sumptionsabouttheunlensedreferencesituationhavetobemade. andsinα/αareof secondorder inthedeflectionα.Theseterms Wedothisbyfixingthecoordinatedistances,whichwouldalsobe can be set to unity if the magnification matrix is needed only to theappropriateapproachforthemodelofrefractionorNewtonian firstorder.Theresultisthenequivalenttotheplanarformalismin deflectioninanEuclideanmetric.Modificationsoftheresultsfor Eqs.(7–8),butwiththemodifiedsphericalpotential. differentconventions(likefixedmetricdistances)willbediscussed Forapointmassatadistanceθ,theHessianofψisdiagonal later. with7 Mainaimofthissectionistheanalysisoflensdeflectionand ψ =ψ , ψ =ψ cotθ , (44) thepotentialtheoryonthesphereasopposedtotheplanartheory. k;k θ,θ ⊥;⊥ θ Forcompletenessthishastobegeneralisedtofinitedistances.Most whichleadsto ofthediscussionofthemagnificationtheorem,ontheotherhand,is m θ basedonthecaseofsourcesatinfinity,becausesomearbitrariness 1+ sin−2 0 M−1 = 4 2 . (45) indefiningareferencesituationcanbeavoidedthen. 0 1 0 cosα cotθsinα − @ A This matrix corresponds exactly to Eqs. (27–29). Neglecting the curvaturetermsinM−1correspondstothelinearapproximationin 5.1 Deflectionangle Eq.(30–31),whereonlythetermlinearinαwasincludedforthe tangentialmagnification. IfthesourceisatafinitedistanceDs fromtheobserver,thesim- plegeometryinFig.2hastobemodified.Ifwewanttokeepthe form of the lens equation (3), the apparent deflection angle α is 4.2.4 Magnificationtheorem nolongerdefinedastheanglebetweentheincomingandoutgoing light ray, but as the difference between apparent and true source Wehavenow,tofirstorder,derivedthemagnificationmatrixasthe position(Fig.4).Inthethin-lensapproximation, thisleadstothe Hessianmatrixofapotential,analogouslytothestandardformal- well-known correction factor of D /D to transform the true to ism.Wecanthusformallyfollow theproof for themagnification ds s the apparent deflection angle. As mentioned earlier, far from the theorem as described in Sec. 2.2 step by step. However, the as- opticalaxisnoteventhepoint-masslenscanbeconsideredasbe- sumption of positive (effective) κ isno longer true, seeEq. (41), ing thin, which means that D is not defined globally. If we in- ds stead consider how a local change of x˙ in Eqs. (20) and follow- 7 This can be derived from the covariant derivatives in (θ,φ) coordi- ing affects the difference between true and apparent source posi- nates, Tθ;θ = Tθ,θ,Tφ;φ = Tφ,φ +sinθcosθTθ,Tθ;φ = Tφ;θ = tion, we find that the integrands have to be scaled with the local Tθ,φ − cotθTφ, together with the scaling transformation ∂k = ∂θ, Dds(z)/Ds =(Ds−z)/Ds.Inaddition,theintegrationhastoend ∂⊥=∂φ/sinθ. atz =Ds.Withthesameapproachasbefore(λ=z),wefindfor (cid:13)c 0000RAS,MNRAS000,000–000 8 O. Wucknitz L towritethetangentialmagnificationM followingEq.(30)forthe T φ deflectionangleinEq.(49)as D D d ds GM 1 1 D +D φ M−1 =1+ d ds tan2 . (55) T c2 „Dd − Dds − DdDds 2« θ θ’ Theradialmagnificationcanbedeterminedfromthederivativeof O D S thedeflectionangle,seeEq.(28), s GM 1 1 D +D φ Fθ,igθu′,rean5d.DφeffionriatioconmopfathcetldeinsstaantcLe.pOarbasmerevteerrsaDndds,oDusrc,eDadrseadnedntohteedanbgyleOs MR−1 =1+ c2 „Dd − Dds + DddDdsds tan2 2« . (56) andS.Recallthat,inconcordancewithourgeneralphilosophy,thelengths TofirstorderinM,thescalarmagnificationisgivenby andanglesareinourconvention definedinanEuclidean metricwiththe samecoordinatesasinthegeneralmetricofEq.(16).(SeecaptionofFig.2.) 2GM 1 1 µ−1 1+ . (57) ≈ c2 „Dd − Dds« Notethat for these calculations weassumed that thecoordi- thedeflectionangleofapoint-masslens nates of source and observer are the same in the lensed and un- Ds D z lensedsituation. ForfiniteDs, thelenswillmodifythegeometry α(θ)= dz s− x¨(x=0,z) (46) of the source sphere, which makes the definition of the unlensed −Z0 Ds referencegeometrysomewhatarbitrary.Whilecoordinatescanbe =−2Gc2M x0Z0Dsdz DsD−s z hx20+(z−z0)2i−3/2 (47) nfisiexzneetdscofoonfrsetpxaonteitnnttdo-elaidkllesoowsuorufcorecrse.asF,moterhaitsnhioinssgenf,uowltecaopsmhporpouaplrdriisakoteene9pf.otrhethirepchoymsipcoa-l 2GM 1 (D z )2+x2 z (D z ) x2 FromthemetricinEq.(16)weinferthattheratioofareato = s− 0 0 + 0 s− 0 − 0 − c2 x0Ds »√x20+(Ds−z0)2 √x20+z02(48) – spooltiedntainalglΨes(aotnththeesosuorucreceposspihtieorne:) changes isotropically with the = 2GM Dds(θ)+Dscosθ−Dd , (49) dA = 1 2Ψs D2dΩ (58) c2 DdDssinθ s − c2 s s „ « withthecoordinatedistancebetweensourceandmass Usingthiswecandefinethetrueareamagnificationµ asafunc- (A) tionofthesolidanglemagnificationµ ,whichwecalledµbe- D (θ)= D2+D2 2D D cosθ . (50) (Ω) ds s d − d s fore: Inthelimitofsmallθthpisreducesto8 dΩ 1 dA 2Ψ µ−1 = s µ−1 = s = 1 s µ−1 (59) (Ω) dΩ (A) D2 dΩ − c2 (Ω) α= 4GM Ds−Dd Θ(Ds−Dd) + (θ) . (51) s „ « c2 » DdDs θ O – TheradialandtangentialmagnificationsMRandMT bothhaveto becorrectedwiththesamefactor,whichisthesquarerootofthat Forasourcebehindthelens,werecovertheclassicallimitingcase forthescalarmagnification,sothat withtheappropriatescalingoftheapparentdeflectionangle.Ifthe alleellnnyssibinsegfc)uo,rmtthheeesrsmianwugacuyhlatwrhitaeynakatethrθe,sj=uosu0trcavesa(enwxisphheieccshteawdn.edImnthatehyidsceacfllaelscbetaitochkneggrmeonauxenrid-- MMRR−(−(AΩ11)) = MMTT−(−(AΩ11)) =1− Ψc2s =1+ GcM2 D1ds . (60) mumeffectwillbereachedatsomefiniteθ. WenowapplythiscorrectiontothemagnificationsfromEqs.(55– Notethat incontrast tothestandardexpressions, Eq. (49) is 56): validforallcombinationsofdistances.EvenD D ispossible, includingthelimitofself-lensingwithDs =Dsd.≈ d MT−(A1) =1+ GcM2 „D1d − DDd+dDDdsds tan2 φ2« (61) GM 1 D +D φ M −1 =1+ + d ds tan2 (62) R(A) c2 D D D 2 5.2 Magnification „ d d ds « Thefirst-orderscalarmagnificationis Laterwewillcomparemagnificationwithamplification,whichcor- responds toanexchange ofobserver andsource, i.e.θ θ′ and 2GM 1 ↔ µ−1 1+ . (63) Dd ↔Dds(seeFig.5).Forthispurpose,weformulatethemagni- (A) ≈ c2 Dd ficationinaformthatexplicitlyshowsthesymmetries.Weusethe Allthesemagnificationsrefertoanunlensedsituationwiththe trigonometricrelations samecoordinatedistancetothesource.Asalternativeswediscuss D2 =D2+D2 2D D cosφ , (52) fixedaffineandmetricdistancesinAppendixC. s d ds− d ds D sinθ =D sinφ , (53) s ds D cosθ=D D cosφ , (54) 9 Note that Avni&Shulami (1988), who followed light rays from the s d ds − sourcetotheobserver,tookthechangedgeometryintoaccountontheside ofthesourcebutnotonthesideoftheobserver.Eventhoughtheyworkin Schwarzschild coordinates,wherethesurfaceofaspherewithaconstant 8 TheHeavisidefunctionisdefinedasΘ(x)=1forx>0andΘ(x)=0 radialcoordinaterisalways4πr2,thisshouldnotbeneglected,sincethe otherwise. comparisonsituationisaspherearoundthesourceandnotaroundthelens. (cid:13)c 0000RAS,MNRAS000,000–000 Fromplanestospheres 9 5.3 PotentialandPoissonequation AppendixA2–A3)convergetotheonesforinfiniteD derivedin s the previous sections and Appendix A1. The distinction between Thepotentialcanbederivedbyintegratingthepoint-massdeflec- µ andµ isnotnecessaryinthislimit. tionangleinEq.(49),oralternativelybyintegratingover theap- (A) (Ω) propriatelyscaledthree-dimensionalpotentialΨ,asshowninAp- pendixA3withtheresultinEq.(A17). 6 RECIPROCITYANDSURFACEBRIGHTNESS InAppendixA2wederivethePoissonequation byintegrat- ing over the three-dimensional potential derivatives, and find the ThemagnificationsinEqs.(61–63)arenotinvariantundertheex- relation changeofsourceandobserver.Writingµ (o,s) = µ forthe (A) (A) ∇2ψ(θ)=2σ(θ)+2Ψo−Ψs(θ) , (64) magnificationofthesourceasseenbytheobserverandµ(A)(s,o) c2 forthemagnificationoftheobserverasseenbythesource,wefind (byexchangingD D )thefollowingrelation,whichiscorrect whereΨoistheNewtonianpotentialattheobserver.Theprojected uptofirst-ordertedrm↔sintdhsetangentialandradialmagnifications. surfacemassdensityisnowdefinedas 4πG Ds D r µ(A)(s,o) =1+ 2GM 1 1 (69) σ(θ)= c2 drr sD− ρ(r) . (65) µ(A)(o,s) c2 „Dd − Dds« Z0 s Whatdoesthismeanphysically?Themagnificationµ (o,s)de- Theweightfunction inEq.(65)hastheshape ofaparabola with (A) finesthescalingoftheapparentsizeofamagnifiedsourceasseen maximum at r = D/2 and zeros at r = 0 and r = D. How- s s bytheobserver.Thereciprocalµ (s,o),ontheotherhand,isin- ever,sincetheapparentsizeofamassclumpscaleswith1/r2,the (A) verselyproportionaltotheareaintheobserverplanethatisspanned influenceofamasselementatrisproportionalto1/r 1/D. − s byacertainlightbundle;thatmeansitdefinestheamplificationin Inclassicallensingtheory,thedivergenceofthedeflectionan- terms of the number of photons received from the source by the gleleadstothelocalsurfacemassdensity.Farawayfromtheop- observerperdetectorareaelement. ticalaxisbutforsourcesatinfinity,thisischangedinthewaythat The ratio of amplification to magnification in Eq. (69) pro- weobtaininEq.(41)thedensitycontrastrelativetothemeanden- videsthegravitationalchangeof‘surfacebrightness’,measuredas sity,whichresultsfromthegravitationalpotentialatthepositionof photonnumberdensitypersolidangle.Inthissense,gravitational theobserver(seeAppendixA1).NowwefindinEq.(64)forfinite lensingdoesnotconservesurfacebrightness. D thatthedivergenceisalsoaffectedbythepotentialatthesource s Thismayseemsurprisingbutisinperfectagreementwiththe position(seeAppendixA2).Thesetwocontributionsdescribethe reciprocitytheoremderivedbyEtherington(1933)10.Ifonedefines influence of all masses, while the surface mass density only in- inanarbitraryspace-timefortwoeventsxandy,whicharecon- cludes masses inside of the source sphere. The projected surface nected by a null-geodesic, i.e. one can be seen by the other, the massdensityσ vanishescompletelyforD 6 D ,i.e.inthecase s d angularsizedistancesD forthedistanceofy asseenbyxand wherethesourceisclosertotheobserverthanthelens. xy viceversa,itcanbeshownthatthetwoarerelatedby WerecallfromSec.2.2thatthedivergenceofthedeflectionis directlyrelatedtothefirst-orderscalarmagnification.Thesameis Dyx = 1+zy , (70) truehere,butthecorrespondingmagnificationnowreferstosolid D 1+z xy x anglesinsteadofarea.WhenwritingEq.(64)forthepoint-mass, wherezaretheredshiftsasmeasuredbyanarbitraryobserver. wefindthatthepotentialtermsleaddirectlytothecorrectionterms Inour situation,thelensmagnificationsactascorrectionsto inEq.(57)ifwefollowthesamerecipeasinEq.(13). obtaintheeffectiveangularsizedistancesfromD: s As consistency check we should test if the integral over Eq. (64) vanishes, as required by the compact geometry of the 1 = µ(A)(o,s) 1 = µ(A)(s,o) (71) sphere.WeknowfromGauss’theoremthatthepotentialofaho- Do2s Ds2 Ds2o Ds2 mogeneoussphericalshellisequivalenttothatofapoint-massfor Thegravitationalredshiftsproducedbythefieldofthelenscanbe regions outside of the shell, and constant inside. Wecan turnthe derivedfromthemetric,Eq.(16),as argumentaround,tolearnthatthepotentialaveragedoverthesur- faceofanysphereisthesameasthatinthecentreofthesphere, cdt Ψ GM 1 1+z = =1 =1+ (72) ifmassesarelocatedonlyoutsideofthesphere.Thesemassesdo ds ˛dr=0 − c2 c2 D notinfluencetheintegralofthedifferenceΨo ΨsinEq.(64).For forapointmassatadist˛˛anceD. massesinsideofthesphere,ontheotherhand−,theaveragedpoten- ˛ WecanconfirmEq.(69)bytakingtheratioofEqs.(71)and tialisindependent of theirlocation, sothat thetotalmasscan be insertingEq.(70)andtheredshiftsfromEq.(72): thoughtofasbeinginthecentre: GM 1 2 <Ψs>=−GI dΩZ0Dsdrr2ρD(rs) +C (66) µµ((AA))((so,,os)) = DDos22os =„11++zzos«2 =011++GcM2 D1d 1 (73) Ψo =−G dΩ Dsdrr2ρ(rr) +C (67) 2GM 1 1B@ c2 DdsCA I Z0 =1+ (74) Thecontributionsfrommassesoutsideofthespherearedenotedas c2 „Dd − Dds« C.BycomparisonwithEq.(65),wefind So far, we have discussed the surface brightness defined as photonnumberpersolidangle.Ifwewanttodetermineitinterms <Ψ Ψ >= c2 <σ> . (68) o s − − Asrequired,theaveragesourcedensityinEq.(64)vanishes. 10 SeealsoEllis(2007)andthemoreeasilyavailablerepublicationofthe NotethatforDs Dd allexpressioninthissection(andin originalarticleasEtherington(2007). ≫ (cid:13)c 0000RAS,MNRAS000,000–000 10 O. Wucknitz ofenergyfluxdensityF,wehavetotakeintoaccountthatboththe anymore.The‘thickness’ofalensisnotdefinedbytheextentofthe energyoftheindividualphotonsandthearrivalrateattheobserver massdistributionbut bytheextentof thedeflectingpotentialand areaffected by theredshift. Thisprovides another factor of (1+ itsderivatives. The thickness of a point-mass lens isthus closely z )2/(1+z)2,sothatthesurfacebrightnessintermsofintensity related to the impact parameter and can be of the same order of o s scaleswith magnitudeasthedistancesinvolved. F 1+z 4 4GM 1 1 Toavoidambiguities,westartbyconsideringasourceatinfin- obs = o =1+ . (75) ity,sothatthegeometryonthesourcesphereisnotchangedbythe F0 „1+zs« c2 „Dd − Dds« actionofthelens,andtheareaofthesourcesphereisnotmodified. Thescalingofthesurfacebrightnesswith(1+z)−4is,ofcourse, Thismakesacomparisonwiththeunlensedsituationmeaningful. a well-known fact in cosmology. Here we have exactly the same Wecalculatemagnificationsbymappingsolidangleelementsfrom effect,butcausedbythemetricperturbationsofagravitationallens the lens sphere to the source sphere. Because we do not include atfinitedistance.Inanycase,weshouldkeepinmindthattheeffect horizonsaroundblackholes,whicharecorrectionsathigherorder, is extremely small, typically of the order m or the square of the thetotalsolidangleofthewholeskymustbe4πwithandwithout Einsteinradius.Fortypicalgalaxy-scalelenseswithEinsteinradii lensing. Lensing definesaone-to-many mapping fromthesource oftheorder 1′′thiscorrespondsto 10−11–10−10. spheretothelenssphere.Weseethebackgroundskyinalldirec- ∼ ∼ tions,nopartsofthebackground arehidden, butsomepartsmay bemultiplyimaged.Withthisargument,weconcludethatthetotal magnification cannot be larger than unity for all positions on the 7 LIGHTTRAVELTIME sourcesphere,incontradictiontothemagnificationtheorem.This Weseparatethelighttraveltimeintothreeparts:Theundisturbed thoughtissupportedbyasimplegeometricargument.Thedensity travel time Ds/c, and the geometrical and potential parts of the ofdeflectedlinesofsightonthesourcesphere(orequivalentlylight time-delay, ∆tgeom and ∆tpot, respectively. The potential part is raysonanobserver’s sphere around thesource) canbeincreased easytocalculate.WestartwiththemetricfromEq.(16)andwrite closetotheopticalaxis,becausealenswithpositivemasshasafo- the(coordinate)timeintervalforanull-curvealongthez-axisas cusingtendency.Intheapproximationofthetangentialplane,this can be true everywhere, since lines of sight (and solid angle ele- 2Ψ dz dt= 1 . (76) ments)canbeborrowedfrominfinity.Onceweconsiderthecom- − c2 c „ « pletesphere, thisisno longer possible. Solidangle elementsthat Forapoint-masslens,theintegralisbasicallythesameasforthe aremoved towards the optical axis must be re-moved from other metricdistanceshowninAppendixC2: parts of the sphere. The magnification cannot be larger than one everywhere.Forthisargumentitisessentialtoworkwithsolidan- D 2 Ds ∆t = dt s = dzΨ(x=0,z) (77) glesonasourcesphereatinfinity.Withasphereatfinitedistance, pot − c −c3 Z Z0 theareadensityofprojectedlinesofsightcanwellincreaseevery- = 2GM lnDds(θ)+Dd+Ds +const (78) where, simply by making the area of the sphere smaller. Masses c3 Dds(θ)+Dd Ds modify the geometry, so that mean magnifications above one are − We observe that this is proportional to the deflection poten- nolongerparadoxical.Thefurtherthesourcespheremovesaway, tial in Eq. (25) only in the limit D , where we have the weaker these distortions get. For a finite mass, they decrease s ∆t = D ψ/c.Inthegeneralcaseth→erei∞snoproportionality withoutlimitsandcanfinallybeneglected. pot d toEq.(A1−7). Thenon-relativisticpicturesofrefractionandNewtoniande- Infact,wedonotexpectaone-to-onerelationbetween∆t flectioninunperturbedgeometrysupportthisview.Inthesescenar- pot andthepotentialψasinthecaseofthinlenses.Theargumentused iosaparadoxcannotbeavoidedifnocorrectionstotheformalism in Sec. 2.1 to explain why the deflection angle is proportional to aremade. thegradient ofthepotentialtime-delaybreaksdown, becausethe Withthismotivation, wecalculate the deflection angle for a geometrical part of the time-delay does not keep its simple form point-masslensforarbitraryanglestotheopticalaxiswithsource of Eq. (1). It cannot be expressed in terms of image and source at infinity and derive magnifications from that. We find an addi- positionaloneanymore,becausethedeflectionisnotrestrictedtoa tional first-order term that lowers the magnification, violates the lensplane(orsphere).Inordertodeterminethegeometricaldelay, magnification theorem at some point, and assures total conserva- wehavetoknowthefullthree-dimensionalmassdistributionand tionofsolidangle.Inordertounderstand whichpartof theclas- notjustitsprojectionσortheprojecteddeflectionpotentialψ. sicalproof of thetheorembecomes invalidoncewegofromtan- Becauseitcannotbeeasilygeneralizedforarbitrarymassdis- gentialplanestofullspheres, wedevelop thepotential theoryfor tributions,wedonotpresentthecalculationof∆t forapoint- arbitrarymassdistributionsonthesphere.Asintheplane,wecan geom masslens. define a two-dimensional lensing potential that is a projection of thethree-dimensionalNewtonianpotential.Inthesamewaywede- fineaprojectedsurfacemassdensityonthesphere.Wefindthatthe Poissonequationismodifiedinaninterestingway.Intheplane,the 8 SUMMARY divergenceofthedeflectionisproportionaltothesurfacemassden- We discuss the classical magnification paradox in gravitational sity.Thiscannotbetrueonthesphere,becausefluxofthedeflec- lensing in order to better understand if and how a magnification tionfieldcannotescapefromthesphere.Theintegrateddivergence greater than unity everywhere can be consistent withglobal pho- must vanish inorder toobey Gauss’ law. Wedo indeed find that tonnumberconservation.Itisoffundamentalimportancetoallow thedivergenceis2(σ σ),thedensitycontrastrelativetotheaver- − forlargeanglesrelativetotheoptical axis.Thereforewedevelop ageddensityσ.Thefieldlinescorrespondingtothedeflectionfield a formalism of lens and source spheres instead of planes. Inthis ‘decay’withincreasingdistancetothemasses.Thisfactprovides situation,evenapoint-masslenscannotberegardedasathinlens averycleanandfirmbackgroundforacorrectionofthestandard (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.