ebook img

Fractional batch distillation PDF

10 Pages·0.814 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fractional batch distillation

Fractional  batch  distillation   Problem  &  solution  principle     A  mixture  of  three  substances  is  to  be  separated  by  means  of  distillation.  Afterwards,  the   ingredients  (benzol,  toluene  and  o-­‐xylene)  are  supposed  to  be  available  in  almost  pure  form.     The  possibility  of  fractional  batch  distillation  is  presented  in  this  document  for  this  purpose.   Batch   distillation   also   allows   the   economic   separation   of   smaller   quantities   of   substance   mixtures  with  at  the  same  time  high  flexibility  regarding  the  design  specification.  Due  to  the   temporal  dependence  of  the  distillation  process  caused  by  the  substance-­‐specific  boiling  range,   batch  distillation  is  a  discontinuous  distillation  process.     A  batch  column  with  5  collection  tanks  is  used  to  accumulate  the  respective  distillate.  A  so-­‐ called  time  switch  between  the  tanks  and  the  column  ensures  allocation  to  the  respective   product  tank.   Fig.  1  shows  the  layout  of  the  process.       Fig.  1      Process  flow  chart       èfocused  on  process  simulation Implementation  of  the  batch  distillation  in  CHEMCAD     To  implement  the  process  in  CHEMCAD,  the  substance  mixture  must  be  defined,  the  flow  sheet   generated  and  the  design  specifications  established.   Once  the  substances  benzol,  toluene  and  o-­‐xylene  have  been  selected  from  the  substance   database  and  the  unit  operation  placed  on  the  flow  sheet,  the  still  pot  of  the  column  is  defined.   Fig.  2  shows  the  column  options  and  fig.  3  the  feed  composition  after  the  sub-­‐item  [Pot  Charge]   has  been  selected.                             Fig.  2      Batch  column  options   Fig.  3      Feed  composition       The  column  properties  are  listed  in  the  sub-­‐item  [Batch  Column].  Fig.  4  shows  the  settings   options  for  the  distillation.  As  three  main  fractions  and  two  intermediate  fractions  are  to  be   obtained,  the  "Number  of  Operation  Steps"  is  set  to  5.  The  number  of  stages  is  set  to  101.  The   condenser  pressure  is  set  to  atmospheric  pressure.  Optionally  it  is  possible  to  define  pressure   losses  within  the  column,  or  simulate  a  volume,  mass  or  mol  hold-­‐up.                                                                                                                       1  Here,  the  selection  of  the  design  and  column  parameters  is  based  on  experience;  alternatively,  a  heuristic  layout  or   performing  a  sensitivity  study  is  also  a  possibility   èfocused  on  process  simulation     Page  2  of  10 Fig.  4      Design  parameter  settings  for  the  column   The   options   sub-­‐item   [Operation   Parameters]   is   selected   to   define   the   cycle.   Now   five   programme  windows  appear  in  which  the  stop  values  of  the  respective  fraction  can  be  set.     Fig.  5  shows  the  settings  of  the  1st  main  fraction.  The  reflux  ratio  and  the  distillation  rate  are   set  to  101  and  100  kmol/h  for  all  fractions,  and  the  step  size  of  the  integration  is  set  to  0.005  h.     At  the  start  of  distillation,  almost  only  the  benzol  boils,  which  is  why  the  stop  value  of  the   fraction  is  set  to  95  mol%  in  the  first  tank.     Fig.  5      Design  parameters  of  the  1st  main  fraction   èfocused  on  process  simulation     Page  3  of  10 Fig.  6      Design  parameters  of  the  1st  intermediate  fraction     As   the   boiling   ranges   of   benzol   and   toluene   overlap,   the     1st  intermediate  fraction  is  stopped  once  the  toluene  concentration  in  the  distillate  is  high   enough  (95  mol%)  to  generate  the  2nd  main  fraction  (see  fig.  6).   This   is   collected   in   the   third   tank.   Here   the   process   is   stopped   analogue   to   the     1st  main  fraction  once  the  toluene  concentration  in  the  tank  sinks  and  reaches  95  mol%.  (See   fig.  7)       Fig.  7      Design  parameters  of  the  2nd  main  fraction   èfocused  on  process  simulation     Page  4  of  10 Fig.  8      Design  parameters  of  the  2nd  intermediate  fraction   The   2nd   intermediate   fraction   consisting   of   toluene   and   o-­‐xylene   is   stopped   analogue  to  the  1st  intermediate  fraction  once  the  o-­‐xylene  concentration  is  sufficiently  high   with  95  mol%  in  the  distillate  flow  (see  fig.  8).   A  time  limit  of  one  hour  is  selected  as  the  stop  option  for  the  last  main  fraction  o-­‐xylene  (see   fig.  9).  At  a  distillation  rate  of  100  kmol/h  and  a  feed  volume  of  100  kmol,  batch  distillation  is   thus  complete  after  one  hour.   The  distillation  process  has  now  been  specified  in  sufficient  detail.       Fig.  9      Design  parameters  of  the  3rd  main  fraction   èfocused  on  process  simulation     Page  5  of  10 Assessment  of  the  simulation  results     12  different  parameters  for  recording  during  the  simulation  can  be  selected  in  the  options   menu  of  the  batch  column  (see  fig.  2)  at  [Set  Screen  Information].  The  mol  break  of  the   components   in   the   tanks   is   selected   in   order   to   be   able   to   reproduce   the   concentration   progression  of  the  individual  components.   The  concentration  values  in  the  tanks  are  now  plotted  parallel  to  the  simulation.     Fig.  10.  a  shows  the  concentration  progression  in  the  first  collection  tank.  As  you  can  see  in  the   figure,  the  benzol  initially  flows  into  the  collection  tank  with  a  concentration  of  100%,  and  is   stopped  after  0.335  h  at  95  mol%  as  defined  by  the  stop  option.   a   b     Fig.  10      Concentration  progression          a    1st  main  fraction;       b    1st  intermediate  fraction     The  concentration  progression  of  the  1st  intermediate  fraction  in  the  second  tank  is  shown  in   fig.  10.  b.  The  accumulation  of  the  two-­‐substance  mixture  benzol  –  toluene  is  stopped  once  the   toluene  concentration  reaches  95  mol%.     Fig.  10  shows  that  the  concentration  progressions  in  the  containers  do  not  progress  steadily  in   the   case   of   a   sequence.   For   example,   the   toluene   concentration   at   the   end   of   the   first   accumulation  is  approx.  6  mol%,  but  starts  with  a  concentration  of  approx.  67  mol%  in  tank  2.   This  is  due  to  the  short  distillation  times  between  the  accumulations,  in  which  the  batch   column  is  operated  with  full  reflux  ratio  in  order  to  achieve  the  next  minimum  concentration  in   the  top.       èfocused  on  process  simulation     Page  6  of  10 Fig.  11.  a  shows  the  progression  of  the  mol  concentrations  in  the  third  container.  Analogue  to   the  1st  main  fraction,  it  becomes  evident  that  the  2nd  main  fraction  consists  of  toluene  and   that  the  stop  option  is  once  again  95  mol%.   The  progression  of  the  concentrations  of  the  2nd  intermediate  fraction  (see  fig.  11.  b)  is   analogue  to  the  concentration  progressions  of  the  1st  intermediate  fraction.  However,  here  o-­‐ xylene   is   the   component   with   the   higher   concentration,   and   the   toluene   concentration   decreases  steadily.   a   b   Fig.  11      Concentration  progressions          a    2nd  main  fraction;       b    2nd  intermediate  fraction       The  fifth  and  last  container  is  fed  with  the  3rd  main  fraction,  o-­‐xylene  (see  fig.  12).   Accumulation  ends  once  the  batch  distillation  has  been  run  for  one  hour.                              Fig.  12      Concentration  progression  of  the  3rd  main  fraction     èfocused  on  process  simulation     Page  7  of  10 CHEMCAD   makes   it   possible   to   record   the   concentration   progression   steadily   across   the   distillate  flow.  The  option  [Plot]  à  [Dynamic  Plots]  à  [Batch  Column  History]  is  selected  for   this  purpose.  Afterwards,  the  batch  column  is  selected  (see  fig.  13).                      Fig.  13      Dynamic  column  plot     This  is  followed  by  the  selection  of  the  components  to  be  recorded  together  with  a  variable   (see  fig.  14).  The  mol  fraction  in  the  distillate  flow  is  now  being  observed.  The  result  is  output   immediately  (see  fig.  15).                      Fig.  14      Setting  of  the  dynamic  column  plot     èfocused  on  process  simulation     Page  8  of  10 Fig.  15      Concentration  progression  in  the  distillate  flow     Instead  of  the  concentration  progressions  in  the  tanks,  a  steady  concentration  progression  of   the  components  is  displayed  now.  By  comparing  the  respective  concentration  with  the  end  and   start  tank  concentrations,  the  time  periods  can  be  determined  with  full  reflux  ratio  and  closed   time  switch.   The  simulation  results  are  thus  fully  recorded.   èfocused  on  process  simulation     Page  9  of  10 Optimisation  of  batch  distillation     Batch  distillation  can  be  optimised  with  respect  to  several  parameters,  such  as  the  energy  input   in  the  column,  the  distillation  time  or  the  heating  costs.  In  view  of  the  product  specification,  it  is   however  expedient  to  optimise  the  distillation  with  regard  to  the  purity  of  the  product.  As   absolute  purity  can  only  be  approximated,  the  aim  is  to  achieve  a  compromise  between  the   desired  concentrations  and  realistic  energy  expenditure.   In  addition,  batch  distillation  can  be  adapted  to  a  constant  reflux  ratio  or  a  constant  top   concentration.   In  case  the  feed  pot  heats  up  excessively,  it  is  possible  to  switch  to  a  total  reflux  ratio  and  thus   approach  a  new  duty  point  without  loss  of  distillate.  The  energy  expenditure  can  be  optimised   with  a  good  column  insulation.   Operating  and  cost  data  can  also  be  included  in  the  simulation  in  real  time.  The  tutorial   "Mapping  in  CHEMCAD"  at  www.chemstations.eu  provides  further  information  on  this  topic.   The  simulation  discussed  in  this  document  was  generated  in  CHEMCAD  6.5.3  and  can  be  used  in   all  versions  as  of  CHEMCAD  5.       Are  you  interested  in  further  tutorials,  seminars  or  other  solutions  with  CHEMCAD?   Then  please  contact  us:     Mail:  [email protected]   Phone:  +49  (0)30  20  200  600   www.chemstations.eu           Authors:     Daniel  Seidl     Meik  Wusterhausen     Armin  Fricke   èfocused  on  process  simulation     Page  10  of  10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.