ebook img

Fourier Series, Fourier Transforms, and the DFT - ArchiMeDes PDF

30 Pages·1999·0.42 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fourier Series, Fourier Transforms, and the DFT - ArchiMeDes

Jenkins, W.K. “Fourier Series, Fourier Transforms, and the DFT” Digital Signal Processing Handbook Ed. Vijay K. Madisetti and Douglas B. Williams Boca Raton: CRC Press LLC, 1999 (cid:13)c1999byCRCPressLLC 1 Fourier Series, Fourier Transforms, and the DFT 1.1 Introduction 1.2 FourierSeriesRepresentationofContinuousTime PeriodicSignals ExponentialFourierSeries(cid:15)TheTrigonometricFourierSeries (cid:15)ConvergenceoftheFourierSeries 1.3 TheClassicalFourierTransformforContinuousTime Signals Properties of the Continuous Time Fourier Transform (cid:15) FourierSpectrumoftheContinuousTimeSamplingModel(cid:15) FourierTransformofPeriodicContinuousTimeSignals(cid:15)The GeneralizedComplexFourierTransform 1.4 TheDiscreteTimeFourierTransform PropertiesoftheDiscreteTimeFourierTransform(cid:15)Relation- shipbetweentheContinuousandDiscreteTimeSpectra 1.5 TheDiscreteFourierTransform PropertiesoftheDiscreteFourierSeries(cid:15)FourierBlockPro- cessing in Real-Time Filtering Applications (cid:15) Fast Fourier TransformAlgorithms 1.6 FamilyTreeofFourierTransforms 1.7 SelectedApplicationsofFourierMethods FastFourierTransforminSpectralAnalysis(cid:15)FiniteImpulse ResponseDigitalFilterDesign(cid:15)FourierAnalysisofIdealand W.KennethJenkins PracticalDigital-to-AnalogConversion 1.8 Summary UniversityofIllinois, Urbana-Champaign References 1.1 Introduction Fouriermethodsarecommonlyusedforsignalanalysisandsystemdesigninmoderntelecommu- nications,radar,andimageprocessingsystems. ClassicalFouriermethodssuchastheFourierseries andtheFourierintegralareusedforcontinuoustime(CT)signalsandsystems,i.e.,systemsinwhich acharacteristicsignal,s.t/,isdefinedatallvaluesoft onthecontinuum−1 < t < 1. Amore recentlydevelopedsetofFouriermethods,includingthediscretetimeFouriertransform(DTFT)and thediscreteFouriertransform(DFT),areextensionsofbasicFourierconceptsthatapplytodiscrete time (DT) signals. A characteristic DT signal, sTnU, is defined only for values of n where n is an integerintherange−1 < n < 1. Thefollowingdiscussionpresentsbasicconceptsandoutlines importantpropertiesforboththeCTandDTclassesofFouriermethods,withaparticularemphasis ontherelationshipsbetweenthesetwoclasses. TheclassofDTFouriermethodsisparticularlyuseful (cid:13)c1999byCRCPressLLC asabasisfordigitalsignalprocessing(DSP)becauseitextendsthetheoryofclassicalFourieranalysis toDTsignalsandleadstomanyeffectivealgorithmsthatcanbedirectlyimplementedongeneral computersorspecialpurposeDSPdevices. TherelationshipbetweentheCTandtheDTdomainsischaracterizedbytheoperationsofsampling andreconstruction. Ifsa.t/denotesasignals.t/thathasbeenuniformlysampledeveryT seconds, thenthemathematicalrepresentationofsa.t/isgivenby X1 sa.t/D s.t/(cid:14).t −nT/ (1.1) nD−1 where(cid:14).t/isaCTimpulsefunctiondefinedtobezeroforallt 6D 0,undefinedatt D 0,andhas unitareawhenintegratedfromt D−1tot DC1. Becausetheonlyplacesatwhichtheproduct s.t/(cid:14).t−nT/isnotidenticallyequaltozeroareatthesamplinginstances,s.t/in(1.1)canbereplaced withs.nT/withoutchangingtheoverallmeaningoftheexpression. Hence,analternateexpression forsa.t/thatisoftenusefulinFourieranalysisisgivenby X1 sa.t/D s.nT/(cid:14).t −nT/ (1.2) nD−1 TheCTsamplingmodelsa.t/consistsofasequenceofCTimpulsefunctionsuniformlyspacedat intervalsofT secondsandweightedbythevaluesofthesignals.t/atthesamplinginstants,asdepicted inFig.1.1. Notethatsa.t/isnotdefinedatthesamplinginstantsbecausetheCTimpulsefunction itselfisnotdefinedatt D 0. However,thevaluesofs.t/atthesamplinginstantsareimbeddedas “areaunderthecurve”ofsa.t/,andassuchrepresentausefulmathematicalmodelofthesampling process. IntheDTdomainthesamplingmodelissimplythesequencedefinedbytakingthevalues ofs.t/atthesamplinginstants,i.e., sTnUDs.t/jtDnT (1.3) Incontrasttosa.t/,whichisnotdefinedatthesamplinginstants,sTnUiswelldefinedatthesampling instants,asillustratedinFig.1.2. Thus,itisnowclearthatsa.t/andsTnUaredifferentbutequivalent modelsofthesamplingprocessintheCTandDTdomains,respectively. Theyarebothusefulfor signalanalysisintheircorrespondingdomains. Theirequivalenceisestablishedbythefactthatthey haveequalspectraintheFourierdomain,andthattheunderlyingCTsignalfromwhichsa.t/and sTnUarederivedcanberecoveredfromeithersamplingrepresentation,providedasufficientlylarge samplingrateisusedinthesamplingoperation(seebelow). 1.2 Fourier Series Representation of Continuous Time Periodic Signals ItisconvenienttobeginthisdiscussionwiththeclassicalFourierseriesrepresentationofaperiodic timedomainsignal,andthenderivetheFourierintegralfromthisrepresentationbyfindingthelimit oftheFouriercoefficientrepresentationastheperiodgoestoinfinity. Theconditionsunderwhicha periodicsignals.t/canbeexpandedinaFourierseriesareknownastheDirichetconditions. They requirethatineachperiods.t/hasafinitenumberofdiscontinuities,afinitenumberofmaxima andminima,andthats.t/satisfiesthefollowingabsoluteconvergencecriterion[1]: Z T=2 js.t/jdt <1 (1.4) −T=2 Itisassumedinthefollowingdiscussionthatthesebasicconditionsaresatisfiedbyallfunctionsthat willberepresentedbyaFourierseries. (cid:13)c1999byCRCPressLLC FIGURE1.1: CTmodelofasampledCTsignal. FIGURE1.2: DTmodelofasampledCTsignal. 1.2.1 Exponential Fourier Series IfaCTsignals.t/isperiodicwithaperiodT,thentheclassicalcomplexFourierseriesrepresentation ofs.t/isgivenby X1 s.t/D anejn!0t (1.5a) nD−1 where!0 D2(cid:25)=T,andwheretheanarethecomplexFouriercoefficientsgivenby Z T=2 an D.1=T/ s.t/e−jn!0tdt (1.5b) −T=2 It is well known that for every value of t where s.t/ is continuous, the right-hand side of (1.5a) converges to s.t/. At values of t where s.t/ has a finite jump discontinuity, the right-hand side of(1.5a)convergestotheaverageofs.t −/ands.tC/,wheres.t−/(cid:17)lim(cid:15)!0s.t −(cid:15)/ands.tC/(cid:17) lim(cid:15)!0s.t C(cid:15)/. Forexample,theFourierseriesexpansionofthesawtoothwaveformillustratedinFig.1.3ischar- acterizedbyT D 2(cid:25),!0 D 1,a0 D 0,andan D a−n D Acos.n(cid:25)/=.jn(cid:25)/forn D 1;2;:::,. The coefficientsoftheexponentialFourierseriesrepresentedby(1.5b)canbeinterpretedasthespec- tralrepresentationofs.t/,becausethean-thcoefficientrepresentsthecontributionofthe(n!0)-th frequencytothetotalsignals.t/. Becausetheanarecomplexvalued,theFourierdomainrepresen- (cid:13)c1999byCRCPressLLC tationhasbothamagnitudeandaphasespectrum. Forexample,themagnitudeoftheanisplotted in Fig. 1.4 for the sawtooth waveform of Fig. 1.3. The fact that the an constitute a discrete set is consistentwiththefactthataperiodicsignalhasa“linespectrum,”i.e.,thespectrumcontainsonly integermultiplesofthefundamentalfrequency! . Therefore, theequationpairgivenby(1.5a) 0 and(1.5b)canbeinterpretedasatransformpairthatissimilartotheCTFouriertransformfor periodic signals. This leads to the observation that the classical Fourier series can be interpreted asaspecialtransformthatprovidesaone-to-oneinvertiblemappingbetweenthediscrete-spectral domainandtheCTdomain. Thenextsectionshowshowtheperiodicityconstraintcanberemoved toproducethemoregeneralclassicalCTFouriertransform,whichappliesequallywelltoperiodic andaperiodictimedomainwaveforms. FIGURE1.3: PeriodicCTsignalusedinFourierseriesexample. FIGURE1.4: MagnitudeoftheFouriercoefficientsforexampleofFigure1.3. 1.2.2 The Trigonometric Fourier Series Although Fourier series expansions exist for complex periodic signals, and Fourier theory can be generalizedtothecaseofcomplexsignals,thetheoryandresultsaremoreeasilyexpressedforreal- valuedsignals. Thefollowingdiscussionassumesthatthesignals.t/isreal-valuedforthesakeof simplifyingthediscussion. However,allresultsarevalidforcomplexsignals,althoughthedetailsof thetheorywillbecomesomewhatmorecomplicated. Forreal-valuedsignalss.t/,itispossibletomanipulatethecomplexexponentialformoftheFourier seriesintoatrigonometricformthatcontainssin.! t/andcos.! t/termswithcorrespondingreal- 0 0 (cid:13)c1999byCRCPressLLC valuedcoefficients[1]. ThetrigonometricformoftheFourierseriesforareal-valuedsignals.t/is givenby X1 X1 s.t/D bncos.n!0t/C cnsin.n!0t/ (1.6a) nD0 nD1 where!0 D2(cid:25)=T. Thebnandcnarereal-valuedFouriercoefficientsdeterminedby FIGURE1.5: PeriodicCTsignalusedinFourierseriesexample2. FIGURE1.6: FouriercoefficientsforexampleofFigure1.5. Z T=2 b D .1=T/ s.t/dt 0 −T=2 Z T=2 bn D .2=T/ s.t/cos.n!0t/dt; nD1;2;:::; (1.6b) −T=2 Z T=2 cn D .2=T/ s.t/sin.n!0t/dt; nD1;2;:::; −T=2 Anarbitraryreal-valuedsignals.t/canbeexpressedasasumofevenandoddcomponents,s.t/D s .t/ C s .t/, where s .t/ D s .−t/ and s .t/ D −s .−t/, and where s .t/ D even odd even even odd odd even Ts.t/Cs.−t/U=2ands .t/ D Ts.t/−s.−t/U=2. ForthetrigonometricFourierseries, itcanbe odd shownthats .t/isrepresentedbythe(even)cosinetermsintheinfiniteseries,s .t/isrepresented even odd bythe(odd)sineterms,andb istheDClevelofthesignal. Therefore,ifitcanbedeterminedby 0 inspectionthatasignalhasDClevel,orifitisevenorodd,thenthecorrectformofthetrigonometric (cid:13)c1999byCRCPressLLC seriescanbechosentosimplifytheanalysis. Forexample,itiseasilyseenthatthesignalshownin Fig.1.5isanevensignalwithazeroDClevel. Thereforeitcanbeaccuratelyrepresentedbythecosine serieswithbn D2Asin.(cid:25)n=2/=.(cid:25)n=2/;nD1;2;:::;asillustratedinFig.1.6. Incontrast,notethat thesawtoothwaveformusedinthepreviousexampleisanoddsignalwithzeroDClevel;thus,itcan becompletelyspecifiedbythesinetermsofthetrigonometricseries. Thisresultcanbedemonstrated bypairingeachpositivefrequencycomponentfromtheexponentialserieswithitsconjugatepartner, i.e.,cn Dsin.n!0t/Danejn!0t Ca−ne−jn!0t,wherebyitisfoundthatcn D2Acos.n(cid:25)/=.n(cid:25)/for thisexample. Ingeneralitisfoundthatan D.bn−jcn/=2fornD1;2;:::;a0 Db0,anda−n Dan(cid:3). ThetrigonometricFourierseriesiscommoninthesignalprocessingliteraturebecauseitreplaces complexcoefficientswithrealonesandoftenresultsinasimplerandmoreintuitiveinterpretation oftheresults. 1.2.3 Convergence of the Fourier Series TheFourierseriesrepresentationofaperiodicsignalisanapproximationthatexhibitsmeansquared convergencetothetruesignal. Ifs.t/isaperiodicsignalofperiodT,ands0.t/denotestheFourier seriesapproximationofs.t/,thens.t/ands0.t/areequalinthemeansquaresenseif Z T=2 MSE D js.t/−s.t/0j2dt D0 (1.7) −T=2 Even with (1.7) satisfied, mean square error (MSE) convergence does not mean that s.t/ D s0.t/ at every value of t. In particular, it is known that at values of t, where s.t/ is discontinuous, the Fourierseriesconvergestotheaverageofthelimitingvaluestotheleftandrightofthediscontinuity. For example, if t is a point of discontinuity, then s0.t / D Ts.t−/Cs.tC/U=2, where s.t−/ and 0 0 0 0 0 s.tC/weredefinedpreviously. (Notethatatpointsofcontinuity,thisconditionisalsosatisfiedby 0 thedefinitionofcontinuity.) BecausetheDirichetconditionsrequirethats.t/haveatmostafinite number of points of discontinuity in one period, the set St, defined as all values of t within one periodwheres.t/ 6D s0.t/,containsafinitenumberofpoints,andSt isasetofmeasurezerointhe formalmathematicalsense. Therefore, s.t/anditsFourierseriesexpansions0.t/areequalalmost everywhere,ands.t/canbeconsideredidenticaltos0.t/fortheanalysisofmostpracticalengineering problems. Convergencealmosteverywhereissatisfiedonlyinthelimitasaninfinitenumberoftermsare included in the Fourier series expansion. If the infinite series expansion of the Fourier series is truncatedtoafinitenumberofterms,asitmustbeinpracticalapplications,thentheapproximation willexhibitanoscillatorybehavioraroundthediscontinuity,knownastheGibbsphenomenon[1]. Lets0 .t/denoteatruncatedFourierseriesapproximationofs.t/,whereonlythetermsin(1.5a) N fromnD−N tonDN areincludedifthecomplexFourierseriesrepresentationisused,orwhere onlythetermsin(1.6a)fromnD0tonDN areincludedifthetrigonometricformoftheFourier seriesisused. Itiswellknownthatinthevicinityofadiscontinuityatt theGibbsphenomenon 0 causess0 .t/tobeapoorapproximationtos.t/. ThepeakmagnitudeoftheGibbsoscillationis13% N ofthesizeofthejumpdiscontinuitys.t−/−s.tC/regardlessofthenumberoftermsusedinthe 0 0 approximation. AsN increases,theregionthatcontainstheoscillationbecomesmoreconcentrated in the neighborhood of the discontinuity, until, in the limit as N approaches infinity, the Gibbs oscillationissqueezedintoasinglepointofmismatchatt . 0 Ifs0.t/isreplacedbysN0 .t/in(1.7),itisimportanttounderstandthebehavioroftheerrorMSEN asafunctionofN,where Z T=2 MSEN D js.t/−sN0 .t/j2dt (1.8) −T=2 (cid:13)c1999byCRCPressLLC AnimportantpropertyoftheFourierseriesisthattheexponentialbasisfunctionsejn!0t(orsin.n!0t/ and cos.n! t/ for the trigonometric form) for n D 0;(cid:6)1;(cid:6)2;::: (or n D 0;1;2;::: for the 0 trigonometricform)constituteanorthonormalset,i.e.,tnk D 1forn D k,andtnk D 0forn 6D k, where Z T=2 tnk D.1=T/ .e−jn!0t/.ejk!0t/dt (1.9) −T=2 AstermsareaddedtotheFourierseriesexpansion,theorthogonalityofthebasisfunctionsguarantees thattheerrordecreasesinthemeansquaresense,i.e.,thatMSEN monotonicallydecreasesasN is increased. Therefore,apractitionercanproceedwiththeconfidencethatwhenapplyingFourierseries analysismoretermsarealwaysbetterthanfewerintermsoftheaccuracyofthesignalrepresentations. 1.3 The Classical Fourier Transform for Continuous Time Signals TheperiodicityconstraintimposedontheFourierseriesrepresentationcanberemovedbytakingthe limitsof(1.5a)and(1.5b)astheperiodT isincreasedtoinfinity. Somemathematicalpreliminaries arerequiredsothattheresultswillbewelldefinedafterthelimitistaken. Itisconvenienttoremove the.1=T/factorinfrontoftheintegralbymultiplying(1.5b)throughbyT, andthenreplacing Tanbyan0 inboth(1.5a)and(1.5b). Because! 0 D2(cid:25)=T,asT increasestoinfinity,!0becomes infinitesimallysmall,aconditionthatisdenotedbyreplacing! with1!. Thefactor.1=T/in(1.5a) 0 becomes.1!=2(cid:25)/. Withthesealgebraicmanipulationsandchangesinnotation(1.5a)and(1.5b) takeonthefollowingformpriortotakingthelimit: X1 s.t/ D .1=2(cid:25)/ an0ejn1!t1! (1.10a) nD−1 Z T=2 an0 D s.t/e−jn1!tdt (1.10b) −T=2 ThefinalstepinobtainingtheCTFouriertransformistotakethelimitofboth(1.10a)and(1.10b) asT ! 1. Inthelimittheinfinitesummationin(1.10a)becomesanintegral,1!becomesd!, n1!becomes!,andan0 becomestheCTFouriertransformofs.t/,denotedbyS.j!/. Theresult issummarizedbythefollowingtransformpair,whichisknownthroughoutmostoftheengineering literatureastheclassicalCTFouriertransform(CTFT): Z 1 s.t/ D .1=2(cid:25)/ S.j!/ej!td! (1.11a) Z −1 1 S.j!/ D s.t/e−j!tdt (1.11b) −1 Often(1.11a\)iscalledtheFourierintegraland(1.11b)issimplycalledtheFouriertransform. The relationshipS.j!/DFfs.t/gdenotestheFouriertransformationofs.t/,whereFf(cid:1)gisasymbolic notationfortheFouriertransformoperator,andwhere!becomesthecontinuousfrequencyvariable after the periodicity constraint is removed. A transform pair s.t/ $ S.j!/ represents a one-to- oneinvertiblemappingaslongass.t/satisfiesconditionswhichguaranteethattheFourierintegral converges. From(1.11a)itiseasilyseenthatFf(cid:14).t −t 0/gDe−j!t0,andfrom(1.11b)thatF −1f2(cid:25)(cid:14).!− !0/g D ej!0t,sothat(cid:14).t −t0/ $ e−j!t0 andej!0t $ 2(cid:25)(cid:14).!−!0/arevalidFouriertransform (cid:13)c1999byCRCPressLLC pairs. UsingtheserelationshipsitiseasytoestablishtheFouriertransformsofcos.! t/andsin.! t/, 0 0 aswellasmanyotherusefulwaveformsthatareencounteredincommonsignalanalysisproblems. AnumberofsuchtransformsareshowninTable1.1. TheCTFTisusefulintheanalysisanddesignofCTsystems,i.e.,systemsthatprocessCTsignals. FourieranalysisisparticularlyapplicabletothedesignofCTfilterswhicharecharacterizedbyFourier magnitudeandphasespectra, i.e., byjH.j!/jandargH.j!/, whereH.j!/iscommonlycalled thefrequencyresponseofthefilter. Forexample,anidealtransmissionchannelisonewhichpasses asignalwithoutdistortingit. ThesignalmaybescaledbyarealconstantAanddelayedbyafixed time increment t , implying that the impulse response of an ideal channel is A(cid:14).t −t /, and its 0 0 correspondingfrequencyresponseisAe−j!t0. Hence,thefrequencyresponseofanidealchannelis specifiedbyconstantamplitudeforallfrequencies,andaphasecharacteristicwhichislinearfunction givenby!t . 0 1.3.1 Properties of the Continuous Time Fourier Transform TheCTFThasmanypropertiesthatmakeitusefulfortheanalysisanddesignoflinearCTsystems. Someofthemoreusefulpropertiesarestatedbelow. AmorecompletelistoftheCTFTpropertiesis giveninTable1.2. Proofsofthesepropertiescanbefoundin[2]and[3]. Inthefollowingdiscus- sionFf(cid:1)gdenotestheFouriertransformoperation, F−1f(cid:1)gdenotestheinverseFouriertransform operation,and(cid:3)denotestheconvolutionoperationdefinedas Z 1 f .t/(cid:3)f .t/D f .t −(cid:28)/f .(cid:28)/d(cid:28) 1 2 1 2 −1 1. Linearity(superposition): Ffaf .t/Cbf .t/gDaFff .t/gCbFff .t/g 1 2 1 2 (aandb,complexconstants) 2. Timeshifting: Fff.t −t0/gDe−j!t0Fff.t/g 3. Frequencyshifting: ej!0tf.t/DF−1fF.j.!−!0//g 4. Timedomainconvolution: Fff .t/(cid:3)f .t/gDFff .t/gFff .t/g 1 2 1 2 5. Frequencydomainconvolution: Fff .t/f .t/gD.1=2(cid:25)/Fff .t/g(cid:3)Fff .t/g 1 2 1 2 6. Timedifferentiation: −j!F.j!/DFfd.f.t//=dtg R 7. Timeintegration: Ff t f.(cid:28)/d(cid:28)gD.1=j!/F.j!/C(cid:25)F.0/(cid:14).!/ −1 TheabovepropertiesareparticularlyusefulinCTsystemanalysisanddesign,especiallywhenthe systemcharacteristicsareeasilyspecifiedinthefrequencydomain,asinlinearfiltering. Notethat properties1,6,and7areusefulforsolvingdifferentialorintegralequations. Property4providesthe basisformanysignalprocessingalgorithmsbecausemanysystemscanbespecifieddirectlybytheir impulseorfrequencyresponse. Property3isparticularlyusefulinanalyzingcommunicationsystems inwhichdifferentmodulationformatsarecommonlyusedtoshiftspectralenergytofrequencybands thatareappropriatefortheapplication. 1.3.2 Fourier Spectrum of the Continuous Time Sampling Model BecausetheCTsamplingmodelsa.t/,givenin(1.1),isinitsownrightaCTsignal,itisappropriate toapplytheCTFTtoobtainanexpressionforthespectrumofthesampledsignal: ( ) X1 X1 Ffsa.t/gDF s.t/(cid:14).t −nT/ D s.nT/e−j!Tn (1.12) nD−1 nD−1 Becausetheexpressionontheright-handsideof(1.12)isafunctionofej!T itiscustomarytodenote thetransformasF.ej!T/ D Ffsa.t/g. Laterinthechapterthisresultiscomparedtotheresultof (cid:13)c1999byCRCPressLLC TABLE1.1 SomeBasicCTFTPairs FourierSeriesCoefficients Signal FourierTransform (ifperiodic) CX1 CX1 akejk!0t 2(cid:25) ak(cid:14).!k!0/ ak kD−1 kD−1 ej!0t 2(cid:25)(cid:14).!C!0/ a1D1 akD0; otherwise cos!0t (cid:25)T(cid:14).!−!0/C(cid:14).!C!0/U a1Da−1D 21 akD0; otherwise sin!0t (cid:25)jT(cid:14).!−!0/−(cid:14).!C!0/U a1D−a−1D 21j akD0; otherwise a0(cid:18)D1; akD0; k6D0 (cid:19) x.t/D1 2(cid:25)(cid:14).!/ hasthisFourierseriesrepresentationforany choiceofT0>0 Periodicsquarewave 8 x.t/D<: 1; jtj<T1 T CX1 2sinkk!0T1(cid:14).!k!0/ !0(cid:25)T1sinc(cid:18)k!(cid:25)0T1(cid:19)D sinkk!(cid:25)0T1 0; T1<jtj(cid:20) 20 kD−1 and x.tCT /Dx.t/ 0 CX1 2(cid:25)CX1 (cid:18) 2(cid:25)k(cid:19) 1 (cid:14).t−nT/ T kD−1(cid:14) !− T akD T forallk nD−1 (cid:26) (cid:18) (cid:19) x.t/D 10;; jjttjj<>TT11 2T1sinc !(cid:25)T1 D 2sin!!T1 — (cid:18) (cid:19) ( W Wt sinWt 1; j!j<W sinc D X.!/D — (cid:25) (cid:25) (cid:25)t 0; j!j>W (cid:14).t/ 1 — 1 u.t/ C(cid:25)(cid:14).!/ — j! (cid:14).t−t0/ ej!t0 — e−atu.t/;Refag>0 1 — aCj! te−atu.t/;Refag>0 1 — .aCj!/2 .ntn−−11/We−atu.t/; .aC1j!/n — Refag>0 (cid:13)c1999byCRCPressLLC

Description:
Properties of the Discrete Time Fourier Transform • Relation- ship between the .. A number of such transforms are shown in Table 1.1. The CTFT is useful in the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.