ebook img

Flipping chromosomes in deep-sea archaea PDF

27 Pages·2017·9.88 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flipping chromosomes in deep-sea archaea

RESEARCHARTICLE Flipping chromosomes in deep-sea archaea MatteoCossu1,CatherineBadel1,RyanCatchpole1,DanièleGadelle1,EvelyneMarguet1, Vale´rieBarbe2,PatrickForterre1,JacquesOberto1* 1 InstituteforIntegrativeBiologyoftheCell(I2BC),MicrobiologyDepartment,CEA,CNRS,Univ.Paris-Sud, Universite´Paris-Saclay,Gif-sur-Yvette,France,2 Genoscope,LaboratoiredeBiologieMole´culairepour l’EtudedesGe´nomesC.E.A.,InstitutdeGe´nomique-2rueGastonCre´mieux,EVRY,France *[email protected] a1111111111 Abstract a1111111111 a1111111111 Oneofthemajormechanismsdrivingtheevolutionofallorganismsisgenomicrearrange- a1111111111 a1111111111 ment.InhyperthermophilicArchaeaoftheorderThermococcales,largechromosomalinver- sionsoccursofrequentlythatevencloselyrelatedgenomesaredifficulttoalign.Clearlynot resultingfromthenativehomologousrecombinationmachinery,thecausativeagentof theseinversionshasremainedelusive.Wepresentamodelinwhichgenomicinversions arecatalyzedbytheintegraseenzymeencodedbyafamilyofmobilegeneticelements.We OPENACCESS characterizedtheintegrasefromThermococcusnautiliplasmidpTN3andshowedthat Citation:CossuM,BadelC,CatchpoleR,Gadelle besidescanonicalsite-specificreactions,itcatalyzeslowsequencespecificityrecombina- D,MarguetE,BarbeV,etal.(2017)Flipping chromosomesindeep-seaarchaea.PLoSGenet tionreactionswiththesameoutcomeashomologousrecombinationeventsonDNAseg- 13(6):e1006847.https://doi.org/10.1371/journal. mentsasshortas104bpbothinvitroandinvivo,incontrasttootherknowntyrosine pgen.1006847 recombinases.Throughserialculturing,weshowedthattheintegrase-mediateddivergence Editor:LotteSøgaard-Andersen,MaxPlanck ofT.nautilistrainsoccursatanastonishingrate,withatleastfourlarge-scalegenomicinver- InstituteforTerrestrialMicrobiology,GERMANY sionsappearingwithin60generations.OurresultsandtheubiquitousdistributionofpTN3- Received:December16,2016 likeintegratedelementssuggestthatamajormechanismofevolutionofanentireorderof Accepted:June1,2017 Archaearesultsfromtheactivityofaselfishmobilegeneticelement. Published:June19,2017 Copyright:©2017Cossuetal.Thisisanopen accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which Authorsummary permitsunrestricteduse,distribution,and Mobileelements(MEs)suchasviruses,plasmidsandtransposonsinfectmostliving reproductioninanymedium,providedtheoriginal organismsandoftenencoderecombinasespromotingtheirinsertionintocellular authorandsourcearecredited. genomes.Theseinsertionsalterthegenomeoftheirhostaccordingtotwomainmecha- DataAvailabilityStatement:Allrelevantdataare nisms.First,MEsprovidenewfunctionstothecellbyintegratingtheirowngeneticinfor- withinthepaperanditsSupportingInformation mationintotheDNAofthehost,atoneormorelocations.Secondly,cellularhomologous files.TheNCBIdatabaseaccessionfor Thermococcus.sp.5-4genomicsequenceis recombinationwillactuponmultipleintegratedcopiesandproduceavarietyoflarge- CP021848. scalechromosomalrearrangements.Ifsuchmodificationsareadvantageous,theywill spreadintothepopulationbynaturalselection.Typically,enzymesinvolvedincellular Funding:ThisworkwasfundedbytheEuropean ResearchCouncilundertheEuropeanUnion’s homologousrecombinationandtheintegrationofMEsaredistinct.Wedescribeherea SeventhFrameworkProgram(FP/2007-2013)/ novelplasmid-encodedarchaealintegrasewhichinadditiontosite-specificrecombina- ProjectEVOMOBIL-ERCGrantAgreementno. tioncancatalyzelowsequencespecificityrecombinationreactionsakintohomologous 340440(MC,PF).Thefundershadnoroleinstudy recombination. design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 1/27 Thermococcalesgenomeevolution Competinginterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Large-scalegenomicrearrangementsalloworganismstoevolvemuchmorerapidlythan throughrandommutationalone.Rearrangementscanresultinthemovementofgenes withingenomes,changesincodingstranduse,lossofnonessentialfunctionsandtheincor- porationofforeignDNA.Asaresult,theorganization,contentandprocessingofgenetic informationcanbedeeplyaltered.Inallthreedomainsoflife,chromosomalreorganization ismainlypromotedbyrecombinationbetweenhomologoussequences,forexamplebetween redundantribosomaloperons[1,2]orintegratedcopiesofmobileelements(ME)suchas prophages[3,4],transposons[5,6]andinsertionsequences(IS)[7].Suchrecombinationcan resultintheDNAinversionsreadilyobservedincloselyrelatedgenomes[8,9].Inadditionto homologousrecombination,chromosomescanundergorearrangementthroughretrotran- sposon-associatednon-homologousrecombination[10].Otherelementslikeintegrons conferrapidadaptationtobacteriainchangingenvironmentsbyshufflingcassettearrays encodingavarietyoffunctions,aprocessinvolvingasite-specificrecombinaseandtwo typesofattachmentsites[11].Furthergenomicrearrangement/reorganizationcanoccur throughtheacquisitionofnewgeneticmaterial,predominantlybylateralgenetransfer.Such genetransferoccursinallorganismsthroughinfectionbymobileelementssuchasvirusesor plasmids,orthroughtheuptakeoffreeorencapsulatedDNAfromtheenvironment[12,13]. Genomescanacquirenovelgenesinafashionrangingfromtransienttopermanentdepend- ingonthetypeofelementandthephysiologicalconditionsofthehost.WhenMEsucceedin stablyinsertingtheirgenome,theinsertedDNAisthenreplicatedaspartofthehostchro- mosome.ThetransactionsbetweenMEDNAandhostgenomearecatalyzedbyrecombi- nasestypicallyencodedbytheelementsthemselves.Theserecombinasesrankindifferent classesbasedontheirenzymaticactivityandthespecificityoftheirDNAtargets.Thesmall- estMEareinsertionsequences(IS)composedofashortDNAsegmentencodingonlythe enzymesinvolvedintheirtranspositionwhichcanoccuratmanydifferentgenomicloca- tions[14].TherelatedtransposonsarelargerDNAsegmentswhichcanbetransposedby twoflankingISandfrequentlycarryadditionalgenessuchasantibioticresistancedetermi- nants[15].ThemostfrequentISrecombinasesareDDEtransposaseswhichdonotform covalenttransposase-DNAintermediatesduringtransposition[16].Otherandtypically largerMEsuchasplasmidsandvirusesencoderecombinasespromotingDNAtransactions withastrongerDNAsequencespecificity.Suchsite-specificrecombinationisnotonlyused formobileelementintegrationandexcisioninbacteriabutalsointhespreadofantibiotic resistancebytransposableelements,thecontrolofplasmidcopynumber,regulationofgene expressionandtheresolutionofconcatenatedchromosomes[17].Site-specificrecombinases canbecategorizedintotheserinerecombinasesandtyrosinerecombinases(Y-recombi- nases);which,incontrasttoDDEtransposases,formcovalentenzyme-DNAintermediates duringrecombination,albeitwithmarkedlydifferentmechanismsofaction.Beforereliga- tionofthetworecombiningDNAstrands,serinerecombinasesgeneratebreaksinallstrands whileY-recombinasesproducetwosequentialsingle-strandbreaks[17].Asarule,site-spe- cificintegration/excisionreactionspromotedbyY-recombinasesoccurviaasynapticcom- plexcomposedoftwoDNAduplexescarryingthespecificsitesboundbyfourrecombinase protomers[17].Thetwo-recombinasepairsareactivatedsequentially,allowingonestrand fromeachduplextobeexchangedatatimeviatwoconsecutiveandsymmetricalHolliday junctions.AnotableexceptionisVibriocholeraephageCTX.Notonlydoesthisphageinte- grateintoitshostgenomeinsinglestrandedformwheretwositesfoldintoahairpinstruc- ture,mimickingarecombinationtargetforthecellularXerCDchromosomeresolvase;but alsoonlyrequiresXerCforintegration[18]. PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 2/27 Thermococcalesgenomeevolution Oneofthebest-studiedY-recombinasesistheintegraseofphageλ.Theprimaryfunction ofthisenzymeistheintegrationofphageDNAintothechromosomeofitsbacterialhost(and itsexcision).Thisfunctionisachievedbypromotingsite-specificrecombinationbetweenthe phageattachmentsiteattPanditschromosomalcounterpartattB[19].Underparticularcir- cumstances,theintegraseofthelambdoidphageHK022iscapableofgeneratinginversions betweenattPandasecondaryattachmentsiteintheHK022leftoperon[3].Similarly,thepri- maryfunctionoftheyeastFLPproteinisthecontrolofthe2μplasmidcopynumber[20] byDNAinversionbetweentwodivergent34bpFRTsiteslocatedontheplasmid[21].FLP recombinaseactivityhasalsobeensuccessfullyusedforintegrationandexcisionofsynthetic DNAinmammaliangenomes[22].TherecombinationactivitiesofbothλintegraseandFLP recombinasearesummarizedasshowninS1Fig.Historically,thisreciprocalandconservative recombinationbetweentwostringentlydefineddouble-strandedDNAsequencesineach chromosomewasdenominatedtheCampbellmodel[23]. ThesequencesofaconsiderablenumberofY-recombinaseshavebeencomparedtoreveal thepositionofconservedresiduesandinferthelocationofthecatalyticactivesite[24].They shareintheirC-terminalmoietyaratherwellconservedregionof~120aminoacidscontain- inguptosixnearlyinvariantaminoacidsR..K..HxxR..[W/H]..Yformingtheactivesite [25,26].AsmallnumberofY-recombinaseshavebeencharacterizedbiochemicallyinArchaea, forexampletheXerArecombinaseofthehyperthermophiliceuryarchaeonPyrococcusabyssi whichexhibitsaperfectactivesiteconsensus[27].Sequencealignmentshaverevealedthat otherarchaealactivesitesdivergeslightlyfromthebacterialconsensusR..HxxR..Y[28].The integrasesofvirusesSSV1isolatedfromthehyperthermophiliccrenarchaeonSulfolobusshiba- tae[29]andSSV2fromSulfolobusislandicus[30]sharetheconsensusR..KxxR..Ywhilethe plasmidicintegraseofSulfolobussp.NOB8H2displaysR..YxxR..Y[28]. Mobileelementsthereforecontributetogenomeevolutionthroughbothsite-specificand homologousrecombination,whichusuallyoperatebydistinctmechanismsandenzymatic activities.Homologousrecombinationisalsoknowntooccurfrequentlybetweenmultiple IScopiesresultinginlargescalearchaealgenomicrearrangements,asobservedinbothCre- narchaeotae.g.Sulfolobusislandicus[31]andEuryarchaotae.g.Pyrococcusabyssi[32].The distributionofarchaealISsispatchynotonlyatthephylumlevelbutalsoatgenuslevel[9]. Interestingly,genomeshufflingoccursinThermococcus[33]evenifISsareseldomfoundin thisgenussuggestingthatalternativerecombinationmechanismsarecapableofproducing large-scalegenomicrearrangements. Ifsite-specificrecombinationonlyrequiresspecificnucleotidesequencestargetedbyaded- icatedrecombinase,homologousrecombinationontheotherhandisamuchmorecomplex process.Inallorganisms,homologousrecombinationconstitutesoneofseveralpathwaysto repairdouble-strandbreaks.InadditiontoDNAsynthesis,itrequiresdedicatedrecombinases andtheiraccessoryfactorswhichactonstretchesofnear-sequence-identicalDNA.Ineukary- oticandbacterialcells,theenzymesandpathwaysinvolvedinhomologousrecombination havebeenextensivelystudied(see[34,35]forreviews),whereasarchaealhomologousrecombi- nationisstillanactivefieldofinvestigation.Itisknownthattheinitialresectioningstepafter double-strandbreakinvolvestheRad50–Mre11–HerA–NurAcomplextogenerate3’single- strandsubstrates[36,37].TheRecAparalogRadAanditsaccessoryfunctionsassociatewith thisssDNAtoconstitutethepresynapticfilament,whichwillscanandpairwithhomologous sequences[38].InthearchaeonThermococcuskodakarensis,homologousrecombinationhas beendetectedexperimentallybetweenstretchesofidenticalDNAsequencesequaltoorgreater than500bp[39]. Toourknowledge,adirectoverlapbetweensite-specificandhomologousrecombination processeshasnotbeendescribedsofar.Inthepresentwork,wereportthediscoveryand PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 3/27 Thermococcalesgenomeevolution characterizationofanewintegrasefromthehyperthermophilicarchaeonThermococcusnautili [40,41]capableofcatalyzingbothsite-specificrecombinationandlowsequencespecificity recombinationreactionsmimickinghomologousrecombination.Thewidedistributionofthis particularY-recombinaseamongtheThermococcusgenusprovidesavalidrationaleforthe observedgenomicrearrangementsintheseArchaea. Results DotplotcomparisonsidentifysyntenybreakpointsinThermococcus chromosomes Wecomparedthechromosomesofthe13completelysequencedThermococcusspeciesavail- abletodatebydotplotanalysisandobservedhighlevelsofgenomescramblingasshowninFig 1A.Strikingly,comparisonofT.onnurineusandT.sp.4557chromosomesbythisapproach revealedonlytwolargeinversionsof139/143Kband102/74Kbrespectively(Fig1B&1C). Thisrelativelysmallnumberofinversionsfacilitatedtheinvestigationofthesyntenybreak- pointsborderingbothinversions.UsingtheSyntTaxwebtool[42],acompositerepresentation wasobtainedasshowninFig1C.Geneorderisconservedimmediatelyupstreamanddown- streamofeachinversionborderandwasusedtoidentifythesyntenybreakpoints.Foreach inversion,thebreakpointsarelocatedwithintRNAgenepairs,transcribedinopposite orientations.Interestingly,T.nautiliplasmidpTN3integratesinthetRNALeugene BD01_0018[41,43](S2Fig)andthisgenedisplaysover97%sequenceidentitywithtRNALeu (GQS_t10759),whichbordersalargechromosomalinversionbetweenT.onnurineusandT. sp.4557(Fig1B).TheconcordancebetweenthechromosomalattachmentsiteofthepTN3 integrase(IntpTN3)andtherecombinationtargetsborderingeachinversion(inoppositeorien- tations)ledustodefineaworkingmodeltoexplaintheformationofgenomicinversions observedintheThermococcusgenus.Wehypothesizethatthefrequentgenomicinversions observedintheevolutionoftheThermococcalesorderarearesultofenzymaticactivityofthe integraseencodedbyhorizontallymobileelements,suchaspTN3. IntpTN3isabonafidetyrosinerecombinase TheintegraseofpTN3sharessignificantsequencesimilaritywithcanonicalY-recombinases anditspredictedactivesitecanbedefinedasR..K..AxxR..Ywhichonlyslightlydivergesfrom theconsensus(S3AFig).Inaddition,IntpTN3displaysahighdegreeofconservationwithtwo biochemicallycharacterizedhyperthermophilicY-recombinases,thearchaealIntSSV1[44]and IntSSV2[30](S3BFig).Thus,itseemedworthwhiletocomparetheenzymaticactivitiesof IntpTN3tothoseofotherenzymesofthesamefamilysuchasphageλintegraseandSaccharo- mycescerevisiae2μplasmidFLPproteinandtovalidatethemagainstthecanonicalY-recombi- nasemodel. IntpTN3isanactivesite-specifictyrosinerecombinase InordertocharacterizetheactivitiesofIntpTN3,itwasnecessarytoover-produceandpurify theenzyme(S4Fig)andtoconstructDNAsubstratescarryingappropriateattachmentsites (asdeterminedbysequentialdeletions(S5Fig).Anintegrasevariant(IntpTN3Y428A)inwhich thecatalytictyrosineissubstitutedwithanalaninewasconstructed,purifiedandtested(S6 Fig).WeusedtheseproteinsandDNAcomponentsinaseriesofinvitroandinvivoexperi- ments,detailedbelow,toascertainthepropertiesofIntpTN3. IntpTN3catalyzesattP-attBintegration. Inordertomeasuretheactivityofpurified IntpTN3,weinitiallydevelopedasimpletestinwhichintegrase-catalyzedintegrationofone PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 4/27 Thermococcalesgenomeevolution Fig1.Genomicdotplotsandsyntenyanalysis.Genomicdotplots(A)betweenT.kodakarensisandT.nautiliand(B) betweenT.onnurineusandT.sp.4557.Allgenomesarecenteredontheirputativepredictedoriginofreplication[33].C. ThetwosyntenybreaksinthegenomicalignmentbetweenT.onnurineusandT.sp.4557(PanelB)werefurtheranalyzed. Geneorderconservationandrecombinationendpointsofthetwomajorinversionswereidentifiedusingcompositeimages generatedbytheSyntTaxwebtool.Inversion“1”occurredbetweentRNALeu(GQS_t10759)andtRNAThr(GQS_t10745) PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 5/27 Thermococcalesgenomeevolution genes;T.sp.4557GQS_t10759geneisorthologoustotheT.nautilitRNALeugene(BD01_0018)whichcorrespondstothe chromosomalattachmentsiteofplasmidpTN3.Inversion“2”(PanelB)occurredbetweentRNALeu(GQS_t10807)and tRNAGly(GQS_t10803)genes. https://doi.org/10.1371/journal.pgen.1006847.g001 plasmid-encodedattBsiteinanidenticalsiteonasecondplasmidresultsinformationofa plasmid-plasmiddimer(S1AFig),whichcanbedetectedbygelelectrophoresis.Inaccordance withouridentificationoftRNALeuasapotentialattBsite,wegeneratedasupercoiledDNA templatecarryingaquasi-full-lengthT.nautilitRNALeugene,Leu2-88(seebelow).We observedtheformationofdimericDNAmoleculesonlywithDNAtemplatescarryingattB tRNALeu,andonlyinthepresenceofIntpTN3(Fig2).Thus,theIntpTN3isabletocatalyzethe site-specificrecombinationofoneattsitewithanother. IntpTN3catalyzesattL-attRexcision. ThecapacityofIntpTN3tocatalyzetheinversereac- tioni.e.theexcisionofaDNAsegmentlocatedbetweenattLandattRsiteswastestedusing thetemplatepMC479,whichcarriesaLeu2-88siteandaminimalLeu2-44siteinthesameori- entation,separatedbya762bpsegment.InthepresenceofIntpTN3,therestrictiondigestion patternrevealedthepresenceoftwobandsof2358and849bp,consistentwiththeexcisionofa circularDNAspeciesbetweentwoattBsites(Fig3).Therecombinationreactionalsogener- atedanadditionalbandof4056bp,explainablebytheintegrationofthe849bpcircularproduct intotheinitialpMC478template.ThisdemonstratesthatIntpTN3isabletoefficientlycatalyze bothDNAintegrationandexcisionreactions. IntpTN3canre-activaterelatedintegratedmobileelements. ThespeciesT.kodakarensis carriesinitsgenomethestablyintegratedelementTKV4[45],whichiscloselyrelatedtopTN3 ofT.nautili.AsshownforpTN3(S2Fig),theintegrationofTKV4intotheT.kodakarensis genomehasdisruptedthegeneencodingIntTKV4,renderingTKV4incapableofspontaneous chromosomalexcision.ConsideringthatIntpTN3andIntTKV4displayextensivesequencesimi- larity(S3Fig)andpromoteintegrationinorthologoustRNALeugenes[45],weinvestigatedthe capacityofIntpTN3toexciseTKV4invitro.ExcisionandcircularizationofaDNAmoleculeis detectablebyPCRamplificationusingsuitablyorientedprimers(Fig4A).TreatmentofT. kodakarensisgenomicDNAwithpurifiedIntpTN3resultedinproductsconsistentwithTKV4 circularization(Fig4B),demonstratingthatIntpTN3couldexcise,andhencere-activatethis dormantmobileelement.Inlightofthisinvitroactivity,weendeavoredtotestthisTKV4res- urrectionreactioninvivo.ThisexperimentinvolvedtheconstructionofspecializedT.koda- karensisexpressionvectorspRC524andpRC526expressingwildtypeIntpTN3andmutant IntpTN3Y428Arespectively(Fig4C)(seeMaterialandmethods).Surprisingly,bothIntpTN3 andtheactivesitemutantIntpTN3Y428AwereabletoreviveTKV4invivo(Fig4D).Notonly doesthisresultdemonstratetheabilityofpTN3toexcise,andthereforere-activateintegrated mobileelements,italsostronglysuggeststhattheactivityofmutatedIntpTN3Y428Acouldbe complementedbythetruncatedIntTKV4encodedbytheintegratedelement,whereasbothvari- antsareinactiveontheirown.Asimilarphenomenonofcomplementationhasbeenreported betweenaDNA-bindingimpairedmutantandacatalytictyrosineresiduemutantofIntSSV1 [44]. IntpTN3catalyzesDNAinversionbetweenattsites. TheabilityofIntpTN3tocatalyzethe inversionofDNAsequencesiskeyinourmodeloflarge-scaleintegrase-mediatedchromo- somalrearrangementsintheThermococcusgenus.TotesttheIntpTN3invertaseactivity,we constructedaplasmid(pMC478)withtwoattachmentsitesininvertedorientation:thefull- lengthtRNALeugeneandtheminimalLeu2-44.Therestrictiondigestionpatternshowedthe presenceoftwonewbandscorrespondingtotheinversionoftheDNAsegmentbetweenthe PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 6/27 Thermococcalesgenomeevolution Fig2.Dimerformation.Supercoiled(SC)plasmidspUC18andpJO322carryingtheLeu2-88fragment(S5A Fig)wereincubatedwithIntpTN3inastandardreaction(seeMaterialsandmethods)andcomparedwith linearizedpJO322byagarosegelelectrophoresis.TheintegrasehasnoeffectonpUC18withtheexception oftheproductionofafaintlinearspecies(indicatedbyanarrow).Theintegraseincreasesconsiderablythe formationofplasmidpJO322dimersandtoalowerextentthatofmultimers.Noincreaseintheformationof opencircular(OC)formwasobserved. https://doi.org/10.1371/journal.pgen.1006847.g002 PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 7/27 Thermococcalesgenomeevolution Fig3.Intptn3excisionandintegration.PlasmidpMC479carriestwocopiesoftRNALeuclonedindirect orientationandseparatedbya762bpspacerfragment(seeMaterialandmethods).Thedirectrepeatsconsist oftheminimaltRNALeu2–44andthelongertRNALeu2–88,bothproficientindimerizationreactions.Plasmid pMC479wasincubatedwithIntpTN3inastandardreaction(seeMaterialsandmethods).TheNdeIrestriction enzymegeneratestwofragmentsof3207and1366bprespectivelyinpMC479.UponincubationwithIntpTN3, NdeIdigestiongeneratesadditionalfragmentsof2358bpcorrespondingtorecombinedpMC479*and849bp correspondingtothecircularizedspacerandrecombinedattsite.Bothconstitutetheproductsoftheexcision reaction.Alarger4056bpfragmentisgeneratedaswellandcorrespondstotherecombinationproduct generatedbyintegrationofthe3207and849bpspecies.Therelativeintensityofthebandsiscompatiblewith anexpectedequilibriumreaction. https://doi.org/10.1371/journal.pgen.1006847.g003 attBsitesonlywhenDNAwastreatedwiththeintegrase(Fig5).Thisresultindicatesthat,like theS.cerevisiaeFLPrecombinase,IntpTN3iscapableofefficientlyperformingallthreecanoni- calreactionscharacteristicofsite-specificY-recombinases:integration,excisionandinversion. Norecombinationproductscouldbeobservedininversionreactionsperformedwiththeinac- tivatedintegrasevariantIntpTN3Y428A(S6Fig). SyntenyanalysisoftheinversionendpointsobservedbetweenT.sp.4557andT.onnurineus indicatesthatrecombinationmayhaveoccurredbetweendifferenttRNAgenes,namely betweentRNALeu(GQS_t10759)andtRNAThr(GQS_t10745)aswellasbetweentRNALeu (GQS_t10807)andtRNAGly(GQS_t10803).Interestingly,inversiontemplatescombining tRNALeuandtRNAThrfailedtoproducerecombinationproducts(Fig5). PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 8/27 Thermococcalesgenomeevolution Fig4.TKV4excisioninvitroandinvivo.APCRamplificationassaywasdesignedtoassertartificial IntpTN3-mediatedTKV4circularization(PanelA).Theassaywasfirstperformedinvitroonfoursamplesof purifiedT.kodakarensisgenomicDNAincubatedwithwildtypeIntpTN3orinactiveIntpTN3Y428Amutated enzymeinastandardreactionanalyzedbyagarosegelelectrophoresis(seeMaterialsandmethods).Only reactionsusingwild-typeenzymegenerateda1710bpbandoftheexpectedexcisionsize(PanelB).The sameTKV4excisionreactionwastestedinvivobytransformingT.kodakarensisKUW1withshuttleplasmids pRC524(expressingwildtypeintegrase)andpRC526(expressingmutatedIntpTN3Y428A)orwiththevector alone(PanelC).TotalDNAwasextractedfromthetransformantsandamplifiedasdescribedabove.Inthisin vivoexperiment,bothenzymeswereTKV4excision-proficient(PanelD). https://doi.org/10.1371/journal.pgen.1006847.g004 PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 9/27 Thermococcalesgenomeevolution Fig5.Intptn3inversion.PlasmidpMC477carriestwocopiesoftRNALeuclonedininvertedorientationand separatedbya892bpspacerfragment(seeMaterialandmethods).Theinvertedrepeatsconsistofthe minimaltRNALeu2–44andthelongertRNALeu2–88,bothproficientindimerizationreactions.Plasmid pMC473carriestRNALeu2–44andtRNAThrGQS_t10745,ininvertedorientationaswell.Bothplasmidswere incubatedwithIntpTN3inastandardreaction(seeMaterialsandmethods).TheNdeIrestrictionenzyme generatesineachcasetwofragmentsof2796and1777bp.UponincubationwithIntpTN3,NdeIdigestionof pMC477generatesadditionalfragmentsof2358and2215bpcorrespondingtotherecombinantpMC477*.As fortheintegration/excisionreactions,therelativeintensityofthebandsiscompatiblewithanexpected equilibriumreaction.WecouldnotdetectanyinversionbetweentRNALeuandtRNAThrinplasmidpMC473. https://doi.org/10.1371/journal.pgen.1006847.g005 Thermococcusnautiliundergoesrapidgenomicrearrangementunder laboratoryconditions Thelarge-scalegenomicinversionsobservedbetweenT.sp.4557andT.onnurineusdisplay minorgeneorderrearrangementsneartherecombinationendpointsindicatingthatthese eventsarenotrecentandmighthaveundergoneremodeling(Fig1C).Inordertoidentify morerecentrearrangements,weinvestigatedwhetherlarge-scalegenomicinversionscould occurspontaneouslyunderlaboratoryconditions.T.nautilicarryingitsnaturalplasmids wassub-culturedintwoindependentexperimentsfor60and66generations(thereforetermed T.nautili60Gand66G)inrichliquidmediumwithintermittentstorageat4˚Candthe PLOSGenetics|https://doi.org/10.1371/journal.pgen.1006847 June19,2017 10/27

Description:
In addition to homologous recombination, chromosomes can undergo rearrangement through retrotran- Conceptualization: JO. Data curation: VB.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.