ebook img

Flexinol as Actuator for a Humanoid Finger PDF

171 Pages·2008·9.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Flexinol as Actuator for a Humanoid Finger

UNIVERSITY OF OSLO Department of Informatics Flexinol as Actuator for a Humanoid Finger - Possibilities and Challenges Master thesis (60 pt) Øyvind Fjellang Sæther 01.11.2008 Abstract Robots become more and more common in our every day lives as technology develops. Robots are normallyactuatedbypneumatics, hydraulicsorservomotors. These technologiesaremature andwidely used,butotherlesscommonlyusedactuatorsarealsoavailable. Amongthesewefindtheartificialmuscle fiber Flexinol which belongs to a class of materials known as Shape Memory Alloys. This thesis aims to implement the artificial muscle fiber Flexinol as actuator for a humanoid finger. The first part of the thesis focuses on testing of single Flexinol wires to determine in what degree these are suitable for long term use as actuators. A test frame is built to investigate contraction speed, force and displacement for wires in different setups. Among these are tests with a small dead weight, a large dead weight, an antagonistic setup and a setup with a spring working as a passive antagonistic force. The second part of the thesis makes use of Flexinol as actuator when designing and prototyping a humanoid finger. The human finger is used as inspiration in this part, applying tendons and muscles in a human-like way. The finger is designed with CAD-software and then printed in plastic. It is then assembled with tendons and actuated with three Flexinol wires. Finally, an attempt to control the humanoid finger is done. Specially designed software and hardware is developed through the thesis to implement working experiments. Software for both a laboratory computer and a microcontroller is written to control the system and to collect sensory data respectively. I II Preface ThisthesisispartofmyMasterDegreeattheUniversityofOslo, DepartmentofInformatics. Thethesis was carried out during 2008 in the research group Robotics and Intelligent Systems (ROBIN). First of all I want to thank my supervisor, Associate Professor Mats Høvin, for creative input, for motivating me to be creative and for valuable feedback both during my practical work and during writing. Ialsowanttothankthefollowing(sortedbytopic): VegardFriisRuud, CharlotteKristiansen, Marie Klemsdahl Eklund and Marte Lødemel Henriksen for fruitful discussions regarding the human anatomy, Kjetil Stiansen for help regarding practical and theoretical electronics and Andreas Gimmestad for his linguistic abilities. Thanksalsogotofriendsandfamilyforshowinginterest, speciallytomyfatherDagHenningSæther for guidance both during my practical work and during writing. Øyvind Fjellang Sæther November 2008 III IV Contents 1 Introduction 1 1.1 Humanoid Hands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Robot Hand Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Flexinol - Artificial Muscle Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Short Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Background 7 2.1 Anatomy of The Human Hand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Skeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Tendons and Muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 Robotic Approach to the Human Hand . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Traditional Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Hydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Pneumatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3 Servo Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.4 Stepper Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.5 Electric Solenoids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Intelligent Materials used as Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 Shape Memory Alloys in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 Flexinol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Electroactive Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4 Actuator Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.1 Power to Weight Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Feedback Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.1 Displacement Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.2 Force Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Used Tools 29 3.1 Atmel AVR Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.1 I/O-Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.2 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.4 Counters and Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . 31 3.1.5 Universal Synchronous and Asynchronous Serial Receiver and Transmitter (USART) 31 3.1.6 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.7 Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.8 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Keithley KUSB-3100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 Microsoft Robotics Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.2 Concurrency and Coordination Runtime (CCR). . . . . . . . . . . . . . . . . . . . 34 3.3.3 Decentralized Software Services (DSS) . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3.4 Visual Programming Language (VPL) . . . . . . . . . . . . . . . . . . . . . . . . . 35 V 4 Own Methods 37 4.1 Testing of Flexinol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.1 Fixation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1.2 Degeneration Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.3 Flexinol Antagonist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.1.4 Spring Antagonist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.5 PWM-controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Test Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.1 Electronics Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Test Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3.1 Software for the Test Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3.2 Web Application for Remote Surveillance . . . . . . . . . . . . . . . . . . . . . . . 48 4.4 Humanoid Finger Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4.1 Anatomical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.2 3D Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 Humanoid Finger Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.1 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.5.2 Electrical Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5.4 Microcontroller Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.5.5 Computer Interface Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.5.6 Interface for Microsoft Robotics Studio . . . . . . . . . . . . . . . . . . . . . . . . 64 4.6 Summary of Own Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5 Experiments 67 5.1 Calibration Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.1 Displacement Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1.2 Force Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2 Testing of Flexinol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.1 Test Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.2 Fixation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.2.3 Degeneration Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2.4 Flexinol Antagonist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.5 Spring Antagonist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.2.6 PWM-Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 Humanoid Finger Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.1 Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.2 Tendons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.3 Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4 Humanoid Finger Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.1 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.4.2 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6 Regulation 93 6.1 Finger Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 PWM-Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.1 Transformation Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.2 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2.3 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.3 Regulation Models by Other Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.4 Own Regulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 VI 7 Future Work 99 7.1 Flexinol Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.3 Developed Finger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.4 Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 8 Conclusion 101 Bibliography 107 A Code attachment 109 A.1 Software for Test Frame Control and Measurement . . . . . . . . . . . . . . . . . . . . . . 109 A.2 Software for Web Surveillance of Test Frame. . . . . . . . . . . . . . . . . . . . . . . . . . 118 A.3 Microcontroller Program for PWM-Control . . . . . . . . . . . . . . . . . . . . . . . . . . 122 A.4 Microcontroller Program for Finger Control . . . . . . . . . . . . . . . . . . . . . . . . . . 132 A.5 Computer Interface Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 A.6 Interface for Microsoft Robotics Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 A.7 Matlab Scripts for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 A.7.1 Help Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 VII VIII

Description:
to be creative and for valuable feedback both during my practical work and during writing. I also want to thank the . 3.1 Atmel AVR Microcontrollers . valve. When contracting the wire, the valve opens and air flows through it.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.