ebook img

Fatigue analysis of two wheel-‐mounted brake disc designs PDF

54 Pages·2015·18.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fatigue analysis of two wheel-‐mounted brake disc designs

Fatigue  analysis  of  two   wheel-­‐mounted  brake   disc  designs   Master  degree  project     DURANTON  Coralie   Stockholm  2015         Division  of  Rail  Vehicles     School  of  Engineering  Sciences Acknowledgements     This  master  thesis  was  carried  out  at  the  Rolling  Stock  Engineering  Centre  (CIM)  of  the   French  National  Railway  Company  (SNCF),  in  Le  Mans,  France,  for  the  Division  of  Rail  Vehicle   at  the  Royal  Institute  of  Technology  (KTH)  in  Stockholm,  Sweden.   The   project   was   conducted   under   the   supervision   of   Sébastien   SMITH   and   Pascal   TOMASIN,  to  whom  I  want  to  thank  for  the  appreciated  support  and  useful  advice.  I  am   really  grateful  to  have  been  able  to  exchange  with  them  and  with  all  the  engineers  of  the   ‘Bogie’  department.   I  also  want  to  show  my  gratitude  to  my  KTH  supervisor  and  examiner,  Sebastian  STICHEL   and  Mats  BERG,  for  their  help  and  guidance,  throughout  this  master  degree  project  and  also   during  the  whole  master’s  program.     Abstract     Due  to  a  need  of  more  compact  bogies,  the  brake  discs  can  be  mounted  on  the  railway   wheels,  bolted  through  the  wheel  web.  Thus,  the  wheels  are  drilled  and  have  multiple  areas   of  contact  with  the  brake  discs.  To  establish  maintenance  procedures  that  will  be  applied  to   the  wheels,  SNCF  used  the  feedback  from  experience  (as  with  the  train  AGC)  which  gives   perfect  performance  in  terms  of  safety.  However,  to  optimize  the  maintenance  process,   numerical   simulations   may   be   preferred   since   they   are   less   conservative.   This   report   describes   the   numerical   simulations,   based   on   the   finite   element   method,   that   were   conducted  to  determine  if  the  Régiolis  wheel  complies  with  the  standard  EN  13979-­‐1  from  a   mechanical  fatigue  point  of  view.  In  addition,  it  provides  additional  insights  regarding  the   loads  and  damage  suffered  by  the  wheel,  which  are  not  taken  into  account  in  the  standard:   the   damage   induced   by   disc   braking   and   the   fretting   that   may   occur   at   the   contact   interfaces.  This  study  has  been  used  as  a  decision  support  for  the  first  inspection  intervals  of   the  Régiolis  wheels.     Keywords:  railway  wheel,  wheel-­‐mounted  brake  disc,  fatigue,  fretting,  Finite  Element   Method,  Finite  Element  Analysis,  ANSYS,  OptiStruct,  nCode.           1 Contents     ACKNOWLEDGEMENTS  ............................................................................................................................  1   ABSTRACT  ................................................................................................................................................  1   CONTENTS  ...............................................................................................................................................  2   CHAPTER  1   INTRODUCTION  ..............................................................................................................  4   1.1   CONTEXT  ............................................................................................................................................  4   1.1.1   More  compact  bogie  ..............................................................................................................  4   1.1.2   Rolling  stocks  at  stake  ...........................................................................................................  4   1.1.3   Examples  of  wheel  mounted  brake  discs  in  the  world  ...........................................................  5   1.2   STAKES  ...............................................................................................................................................  6   1.2.1   Economic  stakes  .....................................................................................................................  6   1.2.2   Technical  stakes  .....................................................................................................................  6   1.3   LIMITATIONS  .......................................................................................................................................  7   1.4   GOALS  ...............................................................................................................................................  7   1.5   METHODOLOGY  ...................................................................................................................................  7   CHAPTER  2   LITERATURE  AND  STANDARD  REVIEW  .............................................................................  9   2.1   THE  WHEEL-­‐MOUNTED  BRAKE  DISCS  .........................................................................................................  9   2.1.1   General  presentation  of  railway  wheels  ................................................................................  9   2.1.2   General  presentation  of  wheel-­‐mounted  brake  discs  ..........................................................  11   2.1.3   Characteristics  of  the  wheel-­‐disc  assemblies  .......................................................................  12   2.2   FATIGUE  APPLIED  TO  WHEELS  ................................................................................................................  16   2.2.1   Fatigue  in  the  standards  relative  to  railway  wheels  ............................................................  16   2.2.2   Fretting-­‐fatigue  ....................................................................................................................  17   2.3   THE  FINITE  ELEMENT  ANALYSIS  ..............................................................................................................  18   2.4   PREVIOUS  WORK  ON  THIS  SUBJECT  .........................................................................................................  19   2.4.1   Work  about  the  AGC  ............................................................................................................  19   2.4.2   Work  about  the  Régiolis  ......................................................................................................  19   CHAPTER  3   GENERAL  PROCEDURE  ...................................................................................................  21   3.1   INTRODUCTION  ..................................................................................................................................  21   3.2   COMPUTER  AIDED  DESIGN  OF  THE  COMPONENTS  .....................................................................................  22   3.3   PREPROCESSING  .................................................................................................................................  23   3.3.1   Preprocessor  used  ................................................................................................................  23   3.3.2   Meshing:  creation  of  the  nodes  and  elements  .....................................................................  25   3.3.3   Assigning  materials  and  properties  .....................................................................................  27   3.3.4   Creating  contact  between  surfaces  .....................................................................................  27   3.3.5   Application  of  the  boundary  conditions  ...............................................................................  29   3.3.6   Application  of  the  loading,  according  to  EN  13979-­‐1  ..........................................................  31   3.4   SOLVING  ...........................................................................................................................................  33   3.4.1   Convergence  criteria  ............................................................................................................  33   3.4.2   Contact  algorithms  ..............................................................................................................  34   3.4.3   Confidence  in  the  results  ......................................................................................................  34   3.5   FATIGUE  POSTPROCESSING  ...................................................................................................................  35   3.5.1   Criterion  and  methodology  for  the  fatigue  analysis  ............................................................  35   CHAPTER  4   ANALYSIS  AND  COMPARISON  OF  THE  FATIGUE  RESULTS  FOR  THE  RIGID  AND  THE   FLEXIBLE  WHEEL-­‐DISC  INTERFACES  ...............................................................................................................  37   4.1   PRELIMINARY  CALCULATIONS  OF  NON-­‐EQUIPPED  WHEELS  ...........................................................................  37   4.2   RESULTS  IN  THE  WEB-­‐HUB  CONNECTION  ..................................................................................................  37   4.3   RESULTS  AROUND  THE  HOLES  ................................................................................................................  38   4.4   RESULTS  IN  THE  CONTACT  AREAS  ...........................................................................................................  40   2 4.5   FATIGUE  POSTPROCESSING  ...................................................................................................................  43   4.6   CONCLUSION  .....................................................................................................................................  46   CHAPTER  5   DISCUSSIONS  AND  SUGGESTIONS  FOR  FURTHER  WORK  ................................................  47   5.1   INFLUENCE  OF  DISC  BRAKING  ................................................................................................................  47   5.1.1   Influence  of  thermal  aspects  ................................................................................................  47   5.1.2   Influence  of  mechanical  aspects  ..........................................................................................  49   5.2   OPTIMIZATION  OF  THE  MESH  SIZE  TO  INCREASE  THE  ACCURACY  IN  CONTACT  AREAS  ..........................................  50   CHAPTER  6   CONCLUSION  ................................................................................................................  51   CHAPTER  7   REFERENCES  ..................................................................................................................  52       3 Chapter  1 Introduction   1.1 Context     1.1.1 More  compact  bogie   Wheel-­‐mounted  brake  discs  are  at  stake  in  this  master’s  thesis.  Before  presenting  the   characteristics  of  the  conception  of  this  wheel-­‐discs  assembly,  the  aim  of  this  chapter  is  to   deal  with  the  backgrounds  of  this  new  design:  the  emergence  of  a  low  floor  train.     The  low  floor  technology  has  led  to  change  the  design  of  the  systems  underneath  the   carbody.  In  order  to  improve  the  passengers’  accessibility,  the  entrance  floor  height  must  be   at   the   same   level   as   the   platform   height,   which   means   there   is   only   a   horizontal   gap   between  the  train  and  the  platform.  Thus,  the  floor  is  lower  than  the  traditional  trains’  floor,   where  there  is  often  a  footboard  between  the  train  and  the  platform.  However,  beneath  the   carbody  and  the  passengers’  pathways,  there  are  sometimes  axle-­‐mounted  brake  discs  and   other  traction  equipment.  Since  there  is  less  room,  the  bogies  have  to  be  more  compact  and   for  example,  the  brake  discs  of  axle-­‐mounted  brake  discs  can  be  shifted  on  the  wheels.     In  order  to  connect  the  brake  discs  and  the  wheel,  wheels  have  been  drilled  and  bolts   assemble  the  wheel  and  the  discs.  Drills  within  the  web  of  the  wheel  induce  concentrated   stresses  and  moreover  the  static  and  dynamic  loads  between  the  wheel  and  the  discs  have   given  rise  to  fatigue  issues.     1.1.2 Rolling  stocks  at  stake   The  AGC  (Autorail  à  Grande  Capacité,  literally  high-­‐capacity  multiple  unit)  delivered  by   Bombardier  in  2004  and  the  Régiolis  delivered  by  Alstom  in  2014  is  the  main  rolling  stocks  in   focus   in   this   study.   Both   of   them   are   regional   trains   and   have   a   maximal   speed   of   approximately  160  km/h.       Figure 1-1 - AGC - Source : Bombardier Transport Figure 1-2 - Régiolis - Source : Alstom Transport, A. Fevrier   Their  wheels  are  produced  by  the  manufacturers  Bonatrans,  Valdunes  and  CAF.  The   wheel-­‐mounted  brake  discs  have  been  designed  and  produced  by  Knorr  (previously  Freinrail)   for  the  AGC  and  by  Faiveley  for  the  Régiolis.   4 Figure 1-3 – Example of a trailer bogie of AGC - Figure 1-4 - Example of a trailer bogie of Régiolis - Source : Bombardier Transportation Source : Alstom Transport   Other  rolling  stock  operated  by  SNCF  have  wheel-­‐mounted  brake  discs,  for  example  the   NAT  (Nouvelle  Automotrice  Transilien,  literally  new  multiple  unit  for  the  Transilien,  i.e.  the   suburban   zone   around   Paris)   and   the   Regio2N   (regional   train   with   double   deck)   of   Bombardier.  Concerning  the  design  of  the  brake  discs,  the  AGC  and  the  NAT  are  similar  since   they  both  have  ‘rigid’  wheel-­‐disc  assemblies;  and  the  Régiolis  and  Regio2N  are  also  similar   due  to  their  ‘flexible’  wheel-­‐disc  assemblies.  Thus,  there  are  two  distinct  designs  and  more   details   will   be   given   about   them   in   Section   2.1.3   -­‐   Characteristics   of   the   wheel-­‐disc   assemblies.  As  written  previously,  the  AGC  was  delivered  10  years  ago  and  the  feedback   regarding  the  ‘rigid’  interface  is  quite  positive.  The  innovative  design  of  the  ‘flexible’  discs   used  on  the  Régiolis  and  the  Regio2N  has  led  to  a  new  verification  and  validation  campaign   made  by  SNCF.  The  work  done  for  this  master  thesis’  project  is  included  in  this  validation   campaign.     1.1.3 Examples  of  wheel  mounted  brake  discs  in  the  world   In  France,  there  are  few  wheel-­‐mounted  brake  discs  but  their  number  is  rising.  In  Europe,   more  examples  of  wheel-­‐mounted  brake  discs  can  be  found,  such  as  the  wheels  of  the   AnsaldoBreda  E403  locomotive  and  the  wheels  of  the  EMU  Regina.       Figure 1-5 – Regina bogie   The   X60   of   Alstom,   a   commuter   train   also   known   as   the   ‘Pendeltåg’   in   Stockholm,   Sweden,  has  wheel-­‐mounted  brake  discs  with  the  same  design  as  the  Régiolis  and  the   Regio2N.  It  has  been  delivered  since  2006.   5 1.2 Stakes   1.2.1 Economic  stakes   In  order  to  prevent  a  fatigue  crack  from  reaching  a  critical  length,  the  inspection  intervals   for  preventive  maintenance  of  the  AGC  wheels  are  extremely  short  during  their  first  time  of   operation.   Each   50,000   km,   the   wheelsets   are   taken   apart   and   the   brake   discs   are   disassembled  from  the  wheels  in  order  to  check  the  appearance  of  cracks.  As  it  is  usually  the   case  within  SNCF,  the  maintenance  intervals  have  been  defined  based  on  feedback  and   learning  from  experience.  This  method  gives  a  complete  satisfaction  regarding  the  safety   issues  but  it  is  expensive  since  the  wheelsets  have  to  be  removed  from  the  operational  fleet,   taken  apart  and  assessed.  For  the  latest  rolling  stock  Régiolis,  the  stakes  are  not  to  have  that   short  inspection  intervals  as  it  was  the  case  with  the  AGC.     For  safety  purposes,  SNCF  must  be  sure  that  the  wheels  are  secure  regarding  fatigue   issues  and  for  economic  reasons  the  inspection  intervals  have  to  be  optimized.  This  has  led   SNCF  to  use  numerical  methods,  in  addition  to  the  feedback,  in  order  to  achieve  their  goals.     1.2.2 Technical  stakes   This  project  was  conducted  within  the  CIM  (Centre  d’Ingénierie  du  Matériel,  literally   rolling  stock  engineering  centre)  with  belongs  to  SNCF.  Through  this  project,  the  goals  were   to  acquire  and  develop  methods  that  involve  the  management  of  contact  elements  with  the   Finite  Element  Analysis  (FEA)  software  products  they  own,  namely  ANSYS  and  OptiStruct,   and  to  enhance  their  fatigue  calculation  methods.     It  is  necessary  to  better  know  the  contact  elements  since  they  are  used  to  represent  the   contacts  between  the  wheels  and  the  brake  discs.  Until  now,  the  running  gear  are  calculated   apart  (the  wheels  on  one  side,  the  brake  discs  on  the  other  side),  which  does  not  fully   represent  the  actual  behaviour  of  the  wheel-­‐discs  assemblies.  The  contact  elements  of  the   numerical  model  are  quite  delicate  to  define  but  they  also  are  decisive  to  reproduce  the   actual   contacts.   The   mastery   of   contacts   with   the   FEA   software   should   help   to   better   understand  the  relative  motion  and  the  forces  between  the  wheel  and  the  discs,  and  notably   to  assess  the  presence  of  fretting  fatigue.     Concerning  fatigue,  the  standards  EN  13979-­‐1+A2  and  UIC  510-­‐5  require  that  the  wheels   should  have  an  infinite  life.  This  requirement  is  based  on  the  application  of  conventional   loads,  so,  exceptional  loads  are  not  taken  into  account  in  the  fatigue  assessment.  However,   in  its  transportation  service,  a  wheel  will  endure  exceptional  loads  that  will  create  damage.   The  damage  is  cumulative  which  means,  one  refers  to  the  fact  that,  every  load  (the  highest   as  the  lowest)  creates  additional  damage  and  can  lead  to  fatigue  crack  initiation.  Assessing   the  cumulative  damage  using  post-­‐processing  software  would  also  be  beneficial.     To   put   it   in   a   nutshell,   this   project   aims   are   bringing   decision   support   for   the   maintenance  that  will  be  applied  for  the  Régiolis.  The  following  aspects  will  be  taken  into   account:  the  mechanical  behaviour  of  the  wheel-­‐discs  assembly,  the  characteristics  of  the   contacts  and  the  fatigue  stress  state  of  the  wheel  under  conventional  loads.     6 1.3 Limitations   The  numerical  simulations  only  use  structural  analysis;  this  means  that  thermal  loads  are   not  taken  into  account.  The  analysis  is  static  or  quasi-­‐static,  so  that  neither  transient  effects   nor  vibration  effects  are  considered.  Furthermore,  the  results  of  the  calculations  will  assess   crack  initiation  but  not  crack  propagation.     Besides,   the   wheels   are   subjected   to   the   conventional   load   cases   described   in   the   standard  EN  13979-­‐1+A2  in  the  chapter  ‘Assessment  of  the  mechanical  behaviour’.  These   conventional  load  cases  represent  three  common  situations:  running  on  a  straight  track  (the   wheelset  is  centred),  running  on  a  curve  track  (the  outside  surface  of  the  flange  is  pressed   against  the  rail)  and  running  through  switches  and  crossings  (the  inner  surface  of  the  flange   is  pressed  against  the  rail).  The  loads  from  shoe  braking  or  disc  braking  are  not  considered.   In   addition,   the   residual   stresses   from   the   manufacturing   process   are   not   calculated   preliminary  (there  is  no  residual  stress  at  the  initial  time)  and  the  same  material  properties   are  used  for  the  whole  wheel.     Finally,  the  expected  methods  should  be  feasible  in  an  industrial  setting,  that  is  to  say   that,  the  calculations  times  should  be  reasonable  and  that  numerical  models  should  be  easy   to  be  taken  over  in  the  future.     1.4 Goals   The  main  purpose  is  to  get  information  about  the  behaviour  of  the  wheel  and  the  brake   discs  at  their  interface,  for  the  AGC  and  for  the  Régiolis  assemblies.  For  wheels,  the  stress   state  at  each  node  of  the  structure  is  needed,  since  a  post-­‐processing  in  fatigue  is  to  be   conducted  in  order  to  see  if  the  wheels  fulfil  the  requirements  of  the  standards  EN  13979-­‐1   and  UIC  510-­‐5.  As  written  in  the  standard:  “The  purpose  of  this  assessment  is  to  ensure  that   there  will  be  no  risk  of  fatigue  cracking  either  in  the  wheel  web  or  in  its  connections  with  the   hub  or  the  rim  during  the  service  life  of  the  wheel“.  This  constitutes  the  decision  support   about  the  first  inspection  intervals  for  the  Régiolis’  maintenance.     Furthermore,  simulation  results  have  to  be  reliable,  robust  (if  some  parameters  are   changed,  the  models  remain  stable  and  the  calculations  converge)  and  fast,  while  having   non-­‐linear  finite  element  models.  Thus,  it  will  improve  the  CIM’s  methods  within  structural   analysis.     1.5 Methodology   This  project  has  been  conducted  by  means  of  finite  element  analysis.  As  I  was  a  beginner,   I  first  trained  myself  with  simple  models  (for  example,  the  CAD  (computer-­‐aided  design)   geometries  were  rougher,  some  components  were  ignored).  Once  this  was  done,  I  made  my   more  complex  models,  to  fit  the  actual  wheel-­‐discs  assemblies.  The  simple  models  enabled   me  to  learn  from  my  errors  and  thus,  not  to  do  it  again  in  the  more  complex  models.       7 While  I  was  building  the  numerical  models,  I  read  the  mechanical  surveys  made  by  SNCF,   Bombardier,  Alstom  and  Faiveley  about  this  subject,  so  I  could  compare  our  hypotheses  and   our  results.  Besides,  I  looked  for  information  about  the  thermal  behaviour  of  the  assemblies   in  order  to  enhance  the  understanding  of  the  wheel-­‐discs  assemblies’  behaviours.       8 Chapter  2 Literature  and  standard  review   2.1 The  wheel-­‐mounted  brake  discs     AGC  and  Régiolis  are  made  of  several  coaches  (from  3  to  6)  that  are  in  connection  with   the  track  through  the  bogies.  The  bogies  bring  the  running  gear,  the  wheelsets  and  the   suspension  together.  One  frame  assembles  these  components.   The   wheelset   is   made   of   an   axle   on   which   wheels,   brake   discs   and   mechanical   transmission  components  are  mounted.  Brake  discs  can  also  be  mounted  on  wheels.  The   pictures  below  illustrate  the  difference  between  a  bogie  with  axle-­‐mounted  brake  discs  and   one  with  wheel-­‐mounted  brake  discs:         Figure 2-1 - Trailer bogie with axle-mounted brake Figure 2-2 - Trailer bogie with wheel-mounted discs - TGV brake discs - AGC   In  the  Finite  Elements  simulations,  the  wheel,  the  brake  discs  and  the  bolts  are  fully   modelled.  Only  one  part  of  the  axle  is  modelled,  i.e.  the  part  which  is  in  contact  with  the   wheel  hub.  In  the  coming  paragraphs,  the  systems  are  presented  in  detail  and  the  specific   technical  vocabulary  is  illustrated.     2.1.1 General  presentation  of  railway  wheels   A  railway  wheel  is  a  circular  component,  which  rolls  and  steers  the  train  on  the  track.   There  are  different  kinds  of  wheels  (solid  or  drilled,  monobloc  or  with  encircling  tires,  cast  or   forged,  etc.)  but  they  are  always  recognizable.  Indeed,  they  are  usually  located  below  the   carbody  (space  for  the  passengers),  generally  joined  on  the  same  wheel  axle  and  sometimes   held  by  a  bogie  frame.  Several  parts  of  the  wheel  are  distinguished,  as  it  can  be  seen  in   Figure  2-­‐3.   9

Description:
mechanical fatigue point of view. Method, Finite Element Analysis, ANSYS, OptiStruct, nCode. used on the Régiolis and the Regio2N has led to a new verification and .. The flange is located in the positive z direction OptiStruct in v13.0) and the preprocessor of Mechanical APDL of ANSYS in
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.