ebook img

Exploring the origin of Minkowski spacetime PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Exploring the origin of Minkowski spacetime

6 1 0 2 g u A 6 Exploring the origin of Minkowski spacetime ] h p - JamesM. Chappell,JohnG. Hartnett,NicolangeloIanella, Azhar n e Iqbaland Derek Abbott g . s c Abstract. FollowingMinkowski’sformulationofspecialrelativity,itisgener- i s allyacceptedthatweliveinafour-dimensionalworldconsistingofthreespace y andonetimedimension.Duetoitsfundamentalimportance,avarietyofargu- h ments have been proposed over the years attempting to derive this spacetime p structure from underlying physical principles. In our approach, we show how [ Minkowski spacetime arises from the geometrical properties of three dimen- 4 sional space. Wedemonstrate thisthrough modeling physical space withClif- v ford’sgeometricalgebraofthreedimensions. Weindeedfindusingthisrepre- 7 sentation that atime-likedimension arises naturallywithinthisspace but also 5 extendsspacetimetoeightdimensionsthroughincorporatingfourspindegrees 8 offreedom.Thisexpandedarenaofspacetimeproducesageneralizedgroupof 4 Lorentztransformationsandprovidesanaturaldescriptionoffundamentalparti- 0 cles.Nearlyallstandardresultsarereturnedinthisexpandedstructureandsoits . 1 mainachievementisthatitprovidesanefficientalternativeformalismtothecon- 0 ventionalfour-vectorformalismbutwewerealsoabletoidentifyseveralareas 5 wherenewphysicsmaybeindicated. 1 : MathematicsSubjectClassification(2010).MSC51B20,83A05. v Keywords.Minkowski,Spacetime,Cliffordgeometricalgebra,Specialrelativ- i X ity,Multivector. r a 1. Introduction Einstein’sseminalpaperof1905[14]introducedarevolutionarynewdescriptionof spaceandtime,thatincludedthepropertiesoftimedilationandlengthcontraction. Minkowskishoweda fewyearslater,thatthesephenomenacouldbesimplyinter- preted as the geometrical properties of a four-dimensional space-time continuum subjecttothemetric ds2 =dt2 dx2, (1.1) − where dx2 = dx dx = dx2 +dx2 +dx2 is the contributionfrom three spatial · 1 2 3 dimensionsandtisthetimeinthisreferenceframe,wherewehaveassumedunits such that the speed of light c = 1. Note, that in this paper we reserve bold fonts, 2Chappell,JohnG.Hartnett,NicolangeloIanella,AzharIqbalandDerekAbbott such as x, to refer to three-vectors.In the Minkowskiformulationwe can write a space-timeeventasthefourvectorX =[t,x]T,wherethecorrespondingeventfor otherinertialframesisfoundthroughtheLorentztransformationX′ = ΛX where Λisa4 4realmatrix,whichpreservesthemetricdistanceinEq.(1.1).Wereiterate × theseelementaryresultstoillustratefirstlytheunifiednatureofspaceandtime,and secondly,thatthemetrichasamixedsignature,asshowninEq.(1.1). Now,duetothefundamentalimportanceofMinkowskispacetime,avarietyof argumentshavebeenproposedovertheyearsseekingtoderivethisspacetimestruc- turefrommoreelementaryconsiderations,suchastheconsistencyofNewton’sFirst Law,spacetimeisotropywithnon-instantaneousinteractionpropagation[31,20],a probabilitydistributionresultingfromquantumfluctuationsofthespacetimemetric, therequirementsfortheexistenceofobservedelementaryparticlesanddynamicsin thecontextofbasicquantummechanicalconsiderations[5,33,34],implicationsof electric/magneticreciprocity[25],andtheeffectiveill-posednatureoftheEinstein fieldequationunlesstheMinkowskimetricholds[35]. WewilladopttheformalismofCliffordgeometricalgebraasithasbeenused previouslybyseveralauthorstoduplicatetheMinkowskispacetimestructure.Two well-knownimplementationsare(i)spacetimealgebra(STA)[22]and(ii)thealge- braofphysicalspace(APS)[2].TheformalismofAPSwillbeshowntobeaspecial case of our approachdetailed shortly, whereas in the case of STA the Minkowski metricisassumedaxiomaticallyratherthandeducedfromthealgebra. WenowbeginwiththeCliffordalgebraofthreedimensionsandproducethe Minkowskimetricasanemergentpropertyofthisalgebraicstructure.Whilerecov- ering standard results we nevertheless generalize the representation of spacetime eventsaswellasthegroupofLorentztransformations.Themetricisfoundtopro- duce a suitable Lagrangian for relativistic processes that indicates possible exten- sionstotheelectromagneticinteraction. 2. Derivation Itisgenerallyacceptedthatweliveinaworldwiththreespacedimensions,ascon- firmedbythepresenceofexactlyfiveregularsolids[11,30]andtheinversesquare lawsofgravityandelectromagnetismthathavebeenexperimentallyverifiedtovery high precision [24], indicating the absence of additional macroscopic dimensions beyondthreespacedimensions.Additionally,overcosmicdistances,thespatialpart oftheuniversehasbeenshowntoapproximateverycloselytobeingEuclidean[12]. Withthesepreliminaryobservations,webeginourinvestigationswiththege- ometricalpropertiesofthreedimensionalEuclideanspace.Inordertodescribethis spaceweadoptClifford’sgeometricalgebra(GA)overthreedimensionsasanap- propriate algebraic representation. This can be expressed using an object called a multivector M =a+x+jn+jb, (2.1) where x = x e + x e + x e a vector, jn = n e e + n e e + n e e a 1 1 2 2 3 3 1 2 3 2 3 1 3 1 2 bivector,andj =e e e trivectorwitha,b,x ,x ,x ,n ,n ,n realscalars[8,6]. 1 2 3 1 2 3 1 2 3 MinkowskiSpacetime 3 A valuable feature of the Clifford algebra description is that it algebraically en- codesthegeometricalentities—points,lines,arealandvolumeelements—foundin three-dimensionalspaceaswellasthephysicalquantitiesidentifiedasscalars,po- lar vectors, axial vectors(pseudovectors)and pseudoscalars(helicity),respectively. WehaveusedasabasisforthreedimensionalClifford’salgebraCℓ 3 ,thethree ℜ unitelementse1,e2,e3subjecttotherelationepeq =δpq+ǫpqrjer,(cid:0)wh(cid:1)ereδisthe Diracdeltafunction,ǫistheantisymmetrictensorandp,q,r 1,2,3 .1Referto ∈ { } AppendixA fora calculationof the multivectorproductusingthese relations.We caneasilyshowthatthetrivectorj commuteswithallelementsofthealgebraand squarestominusone,thusprovidinganaturalsubstitutefortheunitimaginary√ 1 − thusallowingustoremaininacompletelyrealspace.Wecanimmediatelyidentify theCliffordvectorx ofthe multivectorwith conventionalthree-vectorsalso com- monlyreferredtoaspolarvectors.Thebivectorjn,ontheotherhand,hasthetrans- formationalpropertiesappropriatefordescribingaxialvectorquantities.We could also nowattemptto identifya time coordinatewithin the multivectorin Eq. (2.1), however,wewishtoavoidimposinganypre-conceivedideasabouttime,andsowe willrefrainfromdoingthisuntilweclarifyfurtherthepropertiesofthemultivector. Wealsonotethattheeight-dimensionalmultivectorinEq.(2.1)isisomorphictothe complexifiedquaternions,also known as the biquaternionsthat have been studied sincethetimeofHamilton[21,32],however,themultivectorprovidesamorenat- uralgeometricalsetting than the biquaternions,as we can restrict ourselvesto the fieldofrealnumbers.Notethattheoctonionsarealso eight-dimensionalandhave alsobeenutilizedtodescribespacetime[15,17,18,16]. Now,Einstein’sfirstpostulate,thelawsofphysicsarethesameinallinertial framesofreference,leadsustolookfortheinvariantsin three-dimensionalspace, afterapplyinganappropriatetransformationrulesformovingbetweendifferentin- ertialframes. 2.1. Findingtheinvariantsandmetric Definition2.1(Cliffordconjugation). WedefineCliffordconjugationofamulti- vectorM as M¯ =a x jn+jb. (2.2) − − Clifford conjugation is an involution that is an anti-automorphism, so that for a productMN oftwomultivectorsM,N Cℓ 3 ,MN =N¯M¯. ∈ ℜ (cid:0) (cid:1) Cliffordconjugationisanalogoustocomplexconjugationortotheoperation ofraisingandloweringindicesfoundinfour-vectornotation. Definition 2.2 (Multivector amplitude). We define the amplitude squared of a multivectorM throughCliffordconjugationas M 2 =MM¯ =a2 x2+n2 b2+2j(ab x n) (2.3) | | − − − · forming a complex-likenumber. We refer to this as a “complex-like” number be- cause, as already noted, the trivector j is analogous to the unit imaginary and all 1WecandefineaCliffordalgebraCℓ(V,Q)ofaquadraticrealspace(V,Q)whereQisaquadratic formonV.Foranyvectorv∈V,itssquarev2intheCliffordalgebraCℓ(V,Q)equalsQ(v)1,thatis, v2=Q(v)1where1denotestheidentityelementinthealgebra. 4Chappell,JohnG.Hartnett,NicolangeloIanella,AzharIqbalandDerekAbbott other quantities are real scalars. As this is a complex-likenumber the square root is therefore well defined from complex number theory and so we can define the multivectoramplitudeas M = M 2. | | | | p Note that we haveused the conventionaldotproductx n = 1(xn+nx) · 2 whichcannowbedefinedintermsofthealgebraicproductofCliffordvectors,as showninAppendixA. Theorem2.3(Fundamentalmultivectorinvolution). Givenageneralinvolution I inCℓ 3 ,actingonamultivectorI(M) = s a+s x+s jn+s jb,where 0 1 2 3 ℜ s0,s1,s2(cid:0),s3(cid:1)= 1producesapermutationofthesigns,thentheinvolutionofClif- ± fordconjugationthatproducesthemultivectoramplitudeisuniqueinproducinga commutingvalueMI(M). Proof. Wehavetheresultant MI(M) = s a2+s x2 s n2 s b2+j(s +s )ab 0 1 2 3 0 3 − − + j(s xn+s nx)+(s +s )ax (2.4) 2 1 0 1 + (s +s )ajn+(s +s )bjx (s +s )bn. 0 2 1 3 2 3 − Inspectingthisresultantinreverseorder,wecanseethatinordertobecommuting we requires = s , s = s , s = s , s = s and in orderfors xn+ 2 3 1 3 0 2 0 1 2 − − − − s nxtoproducethedotproductandacommutingscalarwerequires = s .This 1 1 2 gives the solution s = s = 1 = s = s that correspondswith Clifford 0 3 1 2 conjugation,showninEq.(2.2).± − − (cid:3) HencewecanconcludethatMI(M) Candsointhecenterofthealgebra. ∈ We will find in the next section that we are constrained to adopt the multivector amplitudeastheonlyviabledefinitionofthemetricoverthespaceofmultivectors duetoitskeypropertyofbeingcommuting. 2.2. Thegrouptransformations Definition2.4(Bilinearmultivectortransformation). Wedefineageneralbilin- eartransformationonamultivectorM as M′ =YMZ, (2.5) whereM,Y,Z Cℓ( 3). ∈ ℜ Wethenfindthetransformedmultivectoramplitude M′ 2 =YMZYMZ =YMZZ¯M¯Y¯ = Y 2 Z 2 M 2, (2.6) | | | | | | | | where we have used the anti-involution property of Clifford conjugation and the commutingproperty of the amplitude. Hence, providedwe specify a unitary con- dition Y 2 Z 2 = 1 for these transformations,thenthe amplitude M will be in- | | | | | | variant. Without loss of generality, it is then convenient to impose the condition Y 2 = Z 2 = 1.ThetransformationinEq.(2.5)isthenthemostgeneralbilinear | | | | ± transformationthatpreservesthemultivectoramplitudeandsoproducesaninvari- antdistanceoverthe space.We will focusonthe specialcase Y 2 = Z 2 = +1 | | | | thatdescribetransformationsthatarecontinuouswiththeidentity. MinkowskiSpacetime 5 WecannowseetheimportanceofCliffordconjugationproducingavaluethat isacommutingscalar,showninEq.(2.3),asunderthegeneraltransformationop- erationinEq.(2.5)thesequantitieswillappearisotropicinspaceandsosatisfythe relativityprincipleofanon-preferredreferenceframeandallowthesimplifications inEq.(2.6).We arethusrequiredtoadoptEq.(2.3)asourdefinitionofthemetric forthespaceofmultivectorsinCℓ( 3). ℜ Now, using the power series expansion of the exponentialfunction,a multi- vectorY canbewritteninanexponentialform[22,23] Y =ec+p+jq+jd, (2.7) provided Y =0,wherec,d andp,q 3.Therefore,wefind | |6 ∈ℜ ∈ℜ YY¯ =ec+p+jq+jdec−p−jq+jd =e2c+2jd. (2.8) Theunitarycondition Y 2 = 1thenrequiresc=0,d=nπ/2,naninteger.Now, | | ± asd = 0simplyaddsacommutingphasetermandbecausethiswillnotaffectthe 6 amplitudeofthemultivectorwe nowsetd = 0 inorderto investigatetheLorentz group.So,alsowritingZ = er+js,withr,s 3,wefinallyproducethegeneral ∈ ℜ transformationoperation M′ =ep+jqMer+js, (2.9) whichwillleavethemultivectoramplitudeinvariant.Thefourthree-vectorsp,q,r,s illustratethatthetransformationisspecifiedbytwelverealparameters,thusgener- alizing the conventional six dimensional Lorentz group, consisting of boosts and rotations. 2.3. ConnectionwiththeconventionalLorentzgroup Now,ifwerepresentspacebythemultivectorinEq.(2.1),thensimplerotationsof thisspacearedescribedbythespecialcaseofEq.(2.9) M′ =e−jw/2Mejw/2, (2.10) whichwillproducearotationofθ = w radiansabouttheaxisw.Itisconvenient || || to have separate notation for the Pythagorean length of a vector w, given by the unboldedsymbolw = w =√w2 = w2+w2+w2. || || 1 2 3 AfurtherspecialcaseofEq.(2.9)pisfoundbyselectingthevectorexponent, whichwillcorrespondtoconventionalLorentzboosts.Thatis M′ =e−φvˆ/2Me−φvˆ/2, (2.11) whereφisdefinedthroughtanhφ = vwherev = v andwherev istherelative || || velocity vector between the two observers. We can rearrange tanhφ = v to give coshφ=γandsinhφ=γv.Hencee−φvˆ =coshφ vˆsinhφ=γ(1 v),where − − γ =1/√1 v2.Inthiscasethevectorvisidentifiedwiththerelativevelocityvec- − torbetweenframeswhereasforrotationsitisidentifiedwiththerotationaxis.These resultsconsistentwiththeknownresultthattheLorentzgroupisasub-manifoldof thePaulialgebra[36]. IfwenowconsidertheeffectofaconventionalLorentzboostonthegeneral- izedeight-dimensionalspacetimecoordinateM =a+x +x +jn +jn +jb, k ⊥ k ⊥ 6Chappell,JohnG.Hartnett,NicolangeloIanella,AzharIqbalandDerekAbbott wherewesplitthespatialcoordinateintocomponentsperpendicularandparallelto theboostdirectionvˆ.WethenfindfromEq.(2.11)that M′ = ae−vˆφ+x e−vˆφ+x (2.12) k ⊥ +jn e−vˆφ+jn +bje−vˆφ k ⊥ = γ a vx +γ x va +x k k ⊥ − − +(cid:0)jγ n (cid:1)vb +(cid:0)jn +j(cid:1)γ b vn , k ⊥ k − − whichnowshowsthetransform(cid:0)ationoft(cid:1)hefullmultive(cid:0)ctorsubj(cid:1)ecttotheconven- tional Lorentz boost operation. We can see that the plane jn orthogonal to the k boostdirectionv isexpandedbytheγ factortojγn .Thisimpliesthatthebivec- k torsdonotrefertoquantitiessuchasareasorangularmomentumofextendedbod- ies2—as the parallelcomponentsare in fact unchangedbysuch boosts—butmust refertootheraxialvector-typequantitiessuchasspinorthemagneticfield.Infact, the bivector and trivector components jn+ jb = j(b + n) are transformed the same as a four-vector therefore have the same transformational properties as the four-spinfour-vector.WecanalsoseethattheconventionalLorentzboosttransfor- mationsplitsthemultivectorspaceintotwofourdimensionalsubspaces 3and 2 3 3 3representedbya+xandjn+jbrespectively,where rℜef⊕erℜstothe ℜ ⊕ ℜ eVxterioraVlgebra.Thefirstfour-vectora+xcanbeidentifiedasconveVntionalspace- timeifweidentifythescalarawiththetimetandthesecondfour-vectorjn+jb asfour-spin.ThusEq.(2.1)appearstodescribeaunifiedformulationofspacetime that includesspin. For example,with respect to the metric in Eq. (2.3), by identi- fyingthescalarawithtimet, andn = 0,b = 0,we obtaintherequiredinvariant spacetimeintervalt2 x2.Thefactthattheconventionalboostoperation,shownin − Eq.(2.12),effectivelysplitsthemultivectorintotwoindependentfour-vectorspaces perhapsillustrateswhythefour-vectoriseffective,eventhoughaunifiedtreatment usingthemultivectorispreferable. Hence,wecanwriteageneralspacetimeeventX,indifferentialform,as dX =dt+dx+jdn+jdb, (2.13) providingageneralizationtoeight-dimensionalevents,wherethespecialcasedX = dt+dxisisomorphictotheconventionalfourvectordX =[dt,dx]T.Referringto Eq.(2.3)thisthereforehasanamplitude dX 2 =dt2 dx2+dn2 db2+2j(dtdb dx dn). (2.14) | | − − − · Ingeneral,theintervalisthereforeacomplex-likenumber. Now,forthespecialcaseforparticlesthathavearestframe,definedasdx= 0,withacorrespondingpropertimedτ,wehave dτ2 = dX 2 =dt2+dn2 db2+2jdt db , (2.15) | 0| 0 0− 0 0 0 where the zero in the subscripts denotes the rest frame. Now as dτ2 is real we thereforerequiredt db = 0, and as we assume dt > 0 then we have db = 0. 0 0 0 0 Hencewehaveintherestframe dτ2 =dt2+dn2 =dt2 dx2+dn2 db2. (2.16) 0 0 − − 2ThedefinitionofangularmomentumforextendedbodiesisconsideredinAppendixB. MinkowskiSpacetime 7 Note that as the imaginary term is now zero in the rest frame and the interval is invariant,thentheimaginarycomponentwillalsoremainzerointheboostedframe. Wecanthenwriteforthepropertime ejudτ =dX =dt +jdn , (2.17) 0 0 0 whereuisathree-vector.Thisthenreturns dX 2 = ejudτ e−judτ = dτ2,as | | required.Notethateju = cosu+juˆsinu,whereu(cid:0)= √u2(cid:1)(cid:0)anduˆ =(cid:1)u/u.Thus thepropertimebecomesidentifiedwiththeevensubalgebraofCℓ( 3),whichcan ℜ be shown to be isomorphic to the quaternions. A connectionis now also made to quantum mechanics, as the Pauli spinors are also isomorphic to the quaternions. Additionally,undera relativisticboostwe willpopulatethefulleight-dimensional multivectorthathasbeenshowntobeisomorphicwiththeeight-dimensionalDirac spinordescribingspin-1 particles[4]. 2 Comparingaprimedrestframewiththeboostedframewethereforefind dt′2+dn′2 =dt2 dx2+dn2 db2. (2.18) − − Now, as we have seen, the two-subspaces of dt+dx and jdn+jdb are disjoint under boosts and so we have dt′2 = dt2 dx2 or dt′ = dt 1 dx2/dt2 = − − dt√1 v2 = dt/γ and so gives the usual time dilation factorpγ = 1/√1 v2, − − wherev = dx.Also,dt′2 > 0thatimpliesdx2 < dt2 andsowehavev < 1,thus dt setting an upper limit speed. Hence, despite the fact that time in the rest frame is quaternionic,neverthelesstheamplitudeofthistimedτ isrealandsowewillfind thatstandardresultsarereturned.However,thisrecognitionoftimeasaquaternion isplannedtobefurtherexploredinasubsequentpaper. 2.4. Momentummultivector DefiningthevelocitymultivectorV =dX/dτ wefindfromEq.(2.13) dX dt dx dt dn dt db dt V = = + +j +j (2.19) dτ dτ dt dτ dt dτ dtdτ = γ(1+v+jw+jh). Now,fromEq.(2.16)assumingtheexistenceofapropertime,thenwehave V 2 = 1. This implies that d V 2 = dVV¯ +V dV¯ = 0, using the product rule|of|dif- dτ| | dτ dτ ferentiation.Also, defining A = dV for an accelerationmultivector,we thuspro- dτ duce an orthogonality condition for the velocity and acceleration multivectors as AV¯+VA¯=0,analogoustoconventionalresultsbutexpandedtoeight-dimensional spacetime. Now,definingthemomentummultivectorP = mV, wherewe assumemis theinvariantrestmass,givingE =γm,p=γmv,s=γmwandH =γmhthen P =mV =E+p+js+jH. (2.20) Theinvariantmassmthusappearshereasascalingfactorofthevelocitymultivec- tor. Note, though, that this assumes that the momentum is parallel to the velocity and the angular momentumvectoris parallelto the angular velocityvector. How- ever,for a classical extendedrigid bodythe angularmomentumis notnecessarily 8Chappell,JohnG.Hartnett,NicolangeloIanella,AzharIqbalandDerekAbbott parallel to its angular velocity vector3. Additionally, the angular momentum of a rigid body does not transform as a four-vectorand so this multivector description cannotbeused to unifythe linearmomentumand angularmomentumofclassical extendedbodies.Now,asalreadynoted,thepropertiesofrelativisticspinforpoint- likeparticlesdoesindeedfollowthistransformationlawoffour-vectorsrequiredby the multivector. Hence it is apparentconfirmation of this approach that the eight- dimensionalmultivectordescriptionrequirestheassumptionofpoint-likeparticles asrequiredbythestandardmodel. Now,wefindtheamplitudeofthemomentummultivector P 2 =E2 p2+s2 H2 =m2, (2.21) | | − − which follows from the fact that V 2 = 1. Referring to Eq. (2.16), we therefore | | haveintherestframe P =E +js . (2.22) 0 0 0 Typically the spin four-vector S = [H,s] is defined to have a zero time compo- nent H in the rest frame, so that S = [0,s ] and so we are consistent with the 0 0 conventionaldefinitionofspin.IfthisreststateP isnowboostedwefind 0 P 2 =E2 p2+s2 H2 =m2 =E2+s2 = P 2. (2.23) | | − − 0 0 | 0| We thus have the expected spin conservation s2 H2 = s2 although the energy − 0 conservation E2 p2 = E2 = m2 s2 implies a rest energy E rather than − 0 − 0 0 the conventionalvalue of m. This can be seen to be due to the fact that the spin energys isnowincludedaspartoftherestenergy.Theinvariantamplitudeofthe 0 momentummultivectorofmthusgivestheexpectedrestenergy.Thusinourcase thetimecomponentofthemomentummultivectordoesnotgivetherestenergy. Now,fromm2 =E2+s2wefind 0 0 γ2 γ2v2 =1 s2/m2, (2.24) − − 0 andtherefore dt 1 s2/m2 =γ = − 0 . (2.25) dτ p√1 v2 − Wenotethatass2 <m2thentherelativetimerateswillremainrealalthoughinthe 0 restframethisexpressionimpliesatimespeedupof dt = 1 s2/m2,relativeto dτ − 0 somehypotheticalspinlessstate.However,itwaspreviousplynotedfromEq.(2.12) that under conventional boost operations the spin components are conserved and so they presumably representintrinsic quantities, so this spinless rest frame is ef- fectivelyunattainable.Thusconventionaltimedilationresultsareretainedbetween framesasshownfromEq.(2.18). Besidesthecaseofmassiveparticleswitharestframe,thesecondveryimpor- tantspecialcase,isthatofmasslessparticles,assumedtobetravelingatthespeed 3Giventheangularvelocityω =w1e1+w2e2+w3e3andtheangularmomentumL=I1w1e1+ I2w2e2+I3w3e3,thenclearlythevectorsωandLareonlyparallelifthemomentsofinertiaI1,I2,I3 areequal. MinkowskiSpacetime 9 of light, in which no rest frameis available to the observer.Hence we expectthat wewillrequirethefullmomentummultivector P =ω+k+js+jH, (2.26) where js+jH describes the angular momentum, assuming units where ~ = 1. Aphotonisassumedtosimultaneouslypossessenergy,linearmomentum,angular momentumandspin,andsoconsistentwiththisdescription. Clearly,manyotherdistinctcasescouldnowbeconsideredsuchasparticles withoutspinorconverselyparticleswithnoenergybutspin.Theapplicationofthe formalismtothesecasescouldthusbeinvestigatedfurther. 2.5. Theaction We require the action integral to involve a Lorentz invariant quantity, and so it is naturaltodefinetheactionbetweentwospacetimeeventsas S = dX , (2.27) Z | | where the distance dX is given by the amplitude of the spacetime multivector, | | givenbyEq.(2.3),whichaswehaveshownisinvariantbetweenobservers.Now,as previously,withtheassumptionofapropertimeinarestframewehave dX =dτ | | andsowehavethespacetimedistance dX 2 = t˙2 x˙2+n˙2 b˙2 dτ2, (2.28) | | (cid:16) − − (cid:17) where we define t˙ = dt, x˙ = dx, n˙ = dn and b˙ = db. If we write the action dτ dτ dτ dτ S = |dX|dτ thenthisimpliesaLagrangian dτ R dX = | | = t˙2 x˙2+n˙2 b˙2 =1, (2.29) L dτ q − − wherewenowextremizetheactionS = dτ. L AswehavenoexplicitcoordinatedRependence, ∂L, ∂L, ∂L and ∂L arecon- ∂t˙ ∂x˙ ∂n˙ ∂b˙ stantsofthemotion.UsingtheEuler-Lagrangeequation[19]fort d ∂ ∂ L = L =0 (2.30) dτ ∂t˙ ∂t thusgivingtheconservedquantity ∂ E L = −1t˙= . (2.31) ∂t˙ L m We have written the conserved quantity as the dimensionless scalar E/m as we expectittorelatetoenergybyNoether’stheorem.Indeed,becauset˙= dt/dτ = γ and −1 = 1, we find equating real components that γ = E/m or E = γm, L whichistheconventionalrelativisticenergyrelation.Thesecondconservedquantity will be the momentump = γmv in agreementwith our previousdefinition. The bivectorcomponentwillproducetheconservationofangularmomentums=γmw asexpectedandthefourthconservedquantitywillbe ∂ H L = −1b˙ = , (2.32) ∂b˙ L m 10Chappell,JohnG.Hartnett,NicolangeloIanella,AzharIqbalandDerekAbbott thatreturnsthehelicityH =mb˙ =γmh=γmdb. dt These relations are consistent with Noether’s theorem [29] that energy con- servation arises from invariance under time translations t, momentum conserva- tionfrominvarianceunderspace translationsx andangularmomentumconserva- tion from rotational invariance jn and a fourth conserved quantity based on the translation over the trivector j representing helicity. The momentum multivector in Eq. (2.20) thus unifies the four conserved quantities into a single principle of theconservationofthemomentummultivector.Thatis,forasetofcollidingparti- cleswith initialmomentummultivectorsP andfinalmomentummultivectorsP , i j we have the conservation condition P = P . Thus the multivector space- i j timestructurenaturallyencodesthefoPurfundamPentalconservationlawsforinertial point-likeparticles. Ifwewishtoincludeinteractionswecanincludetheconventionalinteraction termJ A¯=qV A¯toproduce · · =m VV¯ +qV A¯, (2.33) L · p whereV = dX isthevelocitymultivectorandtheAistheelectromagneticpoten- dτ tial.NaturallyasweexpandV andAtofullmultivectorsthenadditionalinteraction productswillbegenerated,whichcanbefurtherinvestigated. 2.6. Maxwell’sequations UsingCliffordgeometricalgebraitisknownthatMaxwell’sfourequationscanbe writtenwiththesingleequation[6,3] (∂ + )F =ρ J, (2.34) t ∇ − wheretheelectromagneticfield isrepresentedasF = E +jB and = e ∂ + 1 x e ∂ +e ∂ .Now∂ =∂ + andthefour-currentJ =ρ Jareknown∇four-vectors 2 y 3 z t ∇ − andsowecanactwithourgeneraltransformationinEq.(2.9)producing R(∂ + )SS¯FS =R(ρ J)S, (2.35) t ∇ − wherewewererequiredtoinsertS¯andSaroundF forselfconsistency.Thatis,we knowRR¯ =SS¯=1andsomultiplyingEq.(2.35)fromtheleftbyR¯andfromthe rightbyS¯wereproduceMaxwell’sequationsshowninEq.(2.34).Hencewehave therequiredfieldtransformationF′ =S¯FS or (E+jB)′ =e−r−js(E+jB)er+js. (2.36) Thisistheacceptedtransformationfortheelectromagneticfield[6]andsoourgen- eralizedtransformationforspacetimeshowninEq.(2.9)leavesMaxwell’sequations invariantaswellasretainingtheconventionalfieldtransformation. Ifwenowconsidertheeffectofthegeneralizedtransformationsonthefour- currentR(ρ J)S then whereasa conventionalboostwill remainin the formof − a four-current this more general transformation will create bivector and trivector terms R(ρ J)S =ρ′ J′+jK′+jκ′, (2.37) − − wherejκ′ isamagneticmonopoleandK′ isamonopolecurrent.Now,Maxwell’s equation B = 0effectivelystatesthatmonopolesdonotexistandindeed,de- ∇· spitemanyexperiments,haveneverbeenconclusivelydetected.Hence,ifweaccept

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.