ebook img

Experimental Mathematics in Action PDF

335 Pages·2007·5.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Experimental Mathematics in Action

(cid:1) (cid:1) (cid:1) (cid:1) Experimental Mathematics in Action (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Experimental Mathematics in Action David H. Bailey Jonathan M. Borwein Neil J. Calkin Roland Girgensohn D. Russell Luke Victor H. Moll AKPeters,Ltd. Wellesley,Massachusetts (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Editorial,Sales,andCustomerServiceOffice AKPeters,Ltd. 888WorcesterStreet,Suite230 Wellesley,MA02482 www.akpeters.com Copyright(cid:1)c 2007byAKPeters,Ltd. Allrightsreserved. Nopartofthematerialprotectedbythiscopyrightnoticemay bereproducedorutilizedinanyform,electronicormechanical,includingphoto- copying, recording, or by any information storage and retrieval system, without writtenpermissionfromthecopyrightowner. LibraryofCongressCataloging-in-PublicationData Experimentalmathematicsinaction/DavidH.Bailey...[etal.]. p.cm. Includesbibliographicalreferencesandindex. ISBN-13:978-1-56881-271-7(alk.paper) ISBN-10:1-56881-271-X(alk.paper) 1.Experimentalmathematics.I.Bailey,DavidH. QA8.7.E972007 510--dc22 2006048633 PrintedinIndia 1110090807 10987654321 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Toourspouses,children,grandchildren, students,andallloversof experimental mathematics (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Contents Preface xi 1 APhilosophicalIntroduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 MathematicalKnowledgeasWeViewIt . . . . . . . . . . . . . . 1 1.3 MathematicalReasoning . . . . . . . . . . . . . . . . . . . . . . 2 1.4 PhilosophyofExperimentalMathematics . . . . . . . . . . . . . 3 1.5 OurExperimentalMathodology . . . . . . . . . . . . . . . . . . 11 1.6 FindingThingsversusProvingThings . . . . . . . . . . . . . . . 15 1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 AlgorithmsforExperimentalMathematicsI 29 2.1 ThePoetryofComputation . . . . . . . . . . . . . . . . . . . . . 29 2.2 High-PrecisionArithmetic . . . . . . . . . . . . . . . . . . . . . 30 2.3 IntegerRelationDetection . . . . . . . . . . . . . . . . . . . . . 31 2.4 IllustrationsandExamples . . . . . . . . . . . . . . . . . . . . . 33 2.5 DefiniteIntegralsandInfiniteSeriesSummations . . . . . . . . . 43 2.6 ComputationofMultivariateZetaValues . . . . . . . . . . . . . . 44 2.7 Ramanujan-TypeEllipticSeries . . . . . . . . . . . . . . . . . . 45 3 AlgorithmsforExperimentalMathematicsII 53 3.1 TrueScientificValue . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2 PrimeNumberComputations . . . . . . . . . . . . . . . . . . . . 55 3.3 RootsofPolynomials . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4 NumericalQuadrature . . . . . . . . . . . . . . . . . . . . . . . 61 3.5 InfiniteSeriesSummation. . . . . . . . . . . . . . . . . . . . . . 67 3.6 Ape´ry-LikeSummations . . . . . . . . . . . . . . . . . . . . . . 70 vii (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) viii Contents 4 ExplorationandDiscoveryinInverseScattering 79 4.1 MetaphysicsandMechanics . . . . . . . . . . . . . . . . . . . . 79 4.2 ThePhysicalExperiment . . . . . . . . . . . . . . . . . . . . . . 80 4.3 TheModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.4 TheMathematicalExperiment: QualitativeInverseScattering. . . 90 4.5 CurrentResearch . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5 ExploringStrangeFunctionsontheComputer 113 5.1 WhatIs“Strange”? . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.2 NowhereDifferentiableFunctions . . . . . . . . . . . . . . . . . 114 5.3 BernoulliConvolutions . . . . . . . . . . . . . . . . . . . . . . . 126 6 RandomVectorsandFactoringIntegers: ACaseStudy 139 6.1 LearningfromExperience . . . . . . . . . . . . . . . . . . . . . 139 6.2 IntegerFactorization . . . . . . . . . . . . . . . . . . . . . . . . 140 6.3 RandomModels . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.4 TheMainQuestions. . . . . . . . . . . . . . . . . . . . . . . . . 144 6.5 Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.6 WhichModelIsBest? . . . . . . . . . . . . . . . . . . . . . . . 149 6.7 ExperimentalEvidence . . . . . . . . . . . . . . . . . . . . . . . 155 6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7 ASelectionofIntegralsfromaPopularTable 161 7.1 TheAllureoftheIntegral . . . . . . . . . . . . . . . . . . . . . . 161 7.2 TheProjectandItsExperimentalNature . . . . . . . . . . . . . . 163 7.3 FamiliesandIndividuals . . . . . . . . . . . . . . . . . . . . . . 164 7.4 AnExperimentalDerivationofWallis’Formula . . . . . . . . . . 167 7.5 AHyperbolicExample . . . . . . . . . . . . . . . . . . . . . . . 170 7.6 AFormulaHiddenintheList . . . . . . . . . . . . . . . . . . . . 174 7.7 SomeExperimentsonValuations. . . . . . . . . . . . . . . . . . 177 7.8 AnErrorintheLatestEdition . . . . . . . . . . . . . . . . . . . 184 7.9 SomeExamplesInvolvingtheHurwitzZetaFunction . . . . . . . 185 8 ExperimentalMathematics: AComputationalConclusion 189 8.1 MathematiciansAreaKindofFrenchmen . . . . . . . . . . . . . 189 8.2 PuttingLessonsinAction . . . . . . . . . . . . . . . . . . . . . . 190 8.3 VisualComputing . . . . . . . . . . . . . . . . . . . . . . . . . . 191 8.4 APreliminaryExample: VisualizingDNAStrands . . . . . . . . 194 8.5 WhatIsaChaosGame?. . . . . . . . . . . . . . . . . . . . . . . 195 8.6 Hilbert’sInequalityandWitten’sZetaFunction . . . . . . . . . . 202 (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) Contents ix 8.7 ComputationalChallengeProblems . . . . . . . . . . . . . . . . 214 8.8 LastWords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9 Exercises 225 ExercisesforChapter1 . . . . . . . . . . . . . . . . . . . . . . . . . . 225 ExercisesforChapter2 . . . . . . . . . . . . . . . . . . . . . . . . . . 231 ExercisesforChapter3 . . . . . . . . . . . . . . . . . . . . . . . . . . 249 ExercisesforChapter4 . . . . . . . . . . . . . . . . . . . . . . . . . . 256 ExercisesforChapter5 . . . . . . . . . . . . . . . . . . . . . . . . . . 260 ExercisesforChapter6 . . . . . . . . . . . . . . . . . . . . . . . . . . 262 ExercisesforChapter7 . . . . . . . . . . . . . . . . . . . . . . . . . . 265 ExercisesforChapter8 . . . . . . . . . . . . . . . . . . . . . . . . . . 273 AdditionalExercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Bibliography 301 Index 317 (cid:1) (cid:1) (cid:1) (cid:1)

Description:
Maple, Mathematica, and Matlab. The goal of this course is to present a coherent variety of accessible examples of modern mathematics where
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.