ebook img

Evolution Equations of von Karman Type PDF

155 Pages·2015·1.445 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Evolution Equations of von Karman Type

Lecture Notes of the Unione Matematica Italiana Pascal Cherrier Albert Milani Evolution Equations of von Karman Type Lecture Notes of 17 the Unione Matematica Italiana Moreinformationaboutthisseriesathttp://www.springer.com/series/7172 EditorialBoard CiroCiliberto(EditorinChief) CH-8057Zuerich,Switzerland DipartimentodiMatematica e-mail:[email protected] Universita’diRomaTorVergata FrancoFlandoli ViadellaRicercaScientifica DipartimentodiMatematicaApplicata 00133Roma(Italia) UniversitàdiPisa e-mail:[email protected] ViaBuonarroti1c SusannaTerracini(Co-editorinChief) 56127Pisa,Italy UniversitàdegliStudidiTorino e-mail:fl[email protected] DipartimentodiMatematica“GiuseppePeano” AngusMcintyre ViaCarloAlberto10 QueenMaryUniversityofLondon 10123Torino,Italy SchoolofMathematicalSciences e-mail:[email protected] MileEndRoad AdolfoBallester-Bollinches LondonE14NS Departmentd’Àlgebra UnitedKingdom FacultatdeMatemàtiques e-mail:[email protected] UniversitatdeValència GiuseppeMingione Dr.Moliner,50 DipartimentodiMatematicaeInformatica 46100Burjassot(València) UniversitàdegliStudidiParma Spain ParcoAreadelleScienze,53/a(Campus) e-mail:[email protected] 43124Parma,Italy AnnalisaBuffa e-mail:[email protected] IMATI–C.N.R.Pavia MarioPulvirenti ViaFerrata1 DipartimentodiMatematica, 27100Pavia,Italy UniversitàdiRoma“LaSapienza” e-mail:[email protected] P.leA.Moro2 LuciaCaporaso 00185Roma,Italy DipartimentodiMatematica e-mail:[email protected] UniversitàRomaTre FulvioRicci LargoSanLeonardoMurialdo ScuolaNormaleSuperiorediPisa I-00146Roma,Italy PiazzadeiCavalieri7 e-mail:[email protected] 56126Pisa,Italy FabrizioCatanese e-mail:[email protected] MathematischesInstitut ValentinoTosatti Universitätstraße30 NorthwesternUniversity 95447Bayreuth,Germany DepartmentofMathematics e-mail:[email protected] 2033SheridanRoad CorradoDeConcini Evanston,IL60208 DipartimentodiMatematica USA UniversitàdiRoma“LaSapienza” e-mail:[email protected] PiazzaleAldoMoro5 CorinnaUlcigrai 00185Roma,Italy ForschungsinstitutfürMathematik e-mail:[email protected] HGG44.1 CamilloDeLellis Rämistrasse101 InstitutfuerMathematik 8092Zürich,Switzerland UniversitaetZuerich e-mail:[email protected] Winterthurerstrasse190 TheEditorialPolicycanbefoundatthebackofthevolume. Pascal Cherrier (cid:129) Albert Milani Evolution Equations of von Karman Type 123 PascalCherrier AlbertMilani DépartmentdeMathématiques DepartmentofMathematics UniversitéPierreetMarieCurie UniversityofWisconsin Paris,France Milwaukee,WI,USA ISSN1862-9113 ISSN1862-9121 (electronic) LectureNotesoftheUnioneMatematicaItaliana ISBN978-3-319-20996-8 ISBN978-3-319-20997-5 (eBook) DOI10.1007/978-3-319-20997-5 LibraryofCongressControlNumber:2015952855 MathematicsSubjectClassification(2010):53D05,53D12,37J05,37J10,35F21,58E05,53Z05 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) To our wives, Annickand Claudia TentasseIuvat Preface In these notes, we consider two kinds of nonlinear evolution problems of von Karman type on R2m, m (cid:2) 2. Each of these problems consists of a system that resultsfromthecouplingoftwohighlynonlinearpartialdifferentialequations,one hyperbolic or parabolic, and the other elliptic. These systems are called “of von Karman type” because of a formal analogy with the well-known equationsof the samenameinthetheoryofelasticityinR2. 1 TheClassicalEquations 1. To describe the classical hyperbolic von Karman system in R2, we introduce the nonlinear coupling of the second order derivatives of two sufficiently smooth functionsgDg.x;y/andhDh.x;y/,definedby (cid:2) (cid:3) g g Œg;h(cid:2)WDdet xx xy ; (1) h h yx yy andthenweset N.g;h/WDŒg;h(cid:2)CŒh;g(cid:2)Dg h Cg h (cid:3)2g h : (2) xx yy yy xx xy xy TheclassicalvonKarmanequationsinR2consistofthesystem u C(cid:3)2uDN.f;u/CN.';u/; (3) tt (cid:3)2f D(cid:3)N.u;u/; (4) where (cid:3) the usual Laplace operator in R2, and ' D '.t;x;y/ is a given external source. Equations (3) and (4) model the dynamics of the vertical oscillations (buckling) of an elastic two-dimensional thin plate, represented by a bounded vii viii Preface domain(cid:4) (cid:4) R2,duetobothinternalandexternalstresses.Moreprecisely,inthis modeltheunknownfunctionuDu.t;x;y/isameasureoftheverticaldisplacement of the plate; Eq.(4) formally defines a map u 7! f.u/, where f.u/ represents the so-calledAiry stress function,which is related to the internalelastic forcesacting on the plate, and depends on its deformationu; finally, ' represents the action of the external stress forces. Typically, Eqs.(3)C(4) are supplemented by the initial conditions u.0/Du0; ut.0/Du1; (5) whereu0andu1areagiveninitialconfigurationofthedisplacementanditsvelocity, andbyappropriateconstraintsonuattheboundaryof(cid:4). 2.Adetailedandprecisedescriptionofthemodelingissuesrelatedtotheclassical vonKarmanequations,andadiscussionoftheirphysicalmotivations,canbefound in, e.g.,Ciarlet andRabier [12], or in Ciarlet [10,11];in addition,we refer to the recent, exhaustive study by Chuesov and Lasiecka [9] of a large class of initial- boundaryvalueproblemsofvonKarmantypeondomainsofR2,withamultitude ofdifferentboundaryconditions,includingnonlinearones.Thestationarystate of theclassicalvonKarmanequations,describedbythenonlinearellipticsystem (cid:3)2u DN.f;u/CN.';u/; (6) (cid:3)2f D(cid:3)N.u;u/; (7) has been investigated by several authors; in particular, Berger [3], devised a remarkable variational method to establish the existence of suitably regular solu- tions to the stationary system (6)C(7) in a bounded domain of R2, subject to appropriate boundary conditions. Weak solutions of the corresponding system of evolution (3)C(4)C(5), again under appropriate boundary conditions, have been established,amongothers,byLions[21,Chap.1,Sect.4],andFavinietal.[15,16], andChuesovandLasiecka[9]. 2 TheGeneralized Equations 1. To introduce the generalization of the von Karman system (3)C(4) we wish to consider,we nowletm 2 N(cid:2)2, and,givenmC1 smoothfunctionsu1; ::: ;um; u definedonR2m,weset N.u1; ::: ;um/ WD ıji11(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)jimmrij11u1 (cid:5)(cid:5)(cid:5) rijmmum; (8) M.u/ WD N.u; ::: ;u/DmŠ(cid:5) .r2u/; (9) m 2 TheGeneralizedEquations ix wherewe adoptthe usualsummationconventionforrepeatedindices,anduse the following notations. For i1; ::: ;im, j1; ::: ;jm 2 f1; ::: 2mg, ıji11(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)(cid:3)jimm denotes the Kronecker tensor; for 1 (cid:6) i; j (cid:6) 2m, rj WD @@, and (cid:5) is the m-th elementary i i j m symmetricfunctionoftheeigenvalues(cid:6) D(cid:6) .@@u/,1(cid:6)k (cid:6)2m,oftheHessian k k i j matrixH.u/WDŒ@@u(cid:2),thatis, i j X (cid:5) .r2u/WD (cid:6) (cid:5)(cid:5)(cid:5) (cid:6) : (10) m k1 km 1(cid:4)k1<k2<:::<km(cid:4)2m Wealsointroducetheconvention (cid:4) (cid:5) N u.1k1/; ::: ;u.pkp/ WDN.„u1; :ƒ:‚: ;u…1; ::: „up; :ƒ:‚: ;u…p/; (11) k1factors kpfactors withk1C (cid:5)(cid:5)(cid:5) Ckp Dm,andset(cid:3)WD(cid:3)rjju. InLemma1.3.1ofChap.1,weshallshowthattheellipticequation (cid:3)mf D(cid:3)M.u/ (12) canbeuniquelysolved,in asuitablefunctionalframe,forf intermsofu,thereby defining a map u 7! f WD f.u/. Let T > 0. Given a source term ' defined on Œ0;T(cid:2) (cid:7) R2m, we consider the Cauchy problem, of hyperbolic type, in which we wishtodetermineafunctionuonŒ0;T(cid:2)(cid:7)R2m,satisfyingtheequation u C(cid:3)muDN.f.u/;u.m(cid:5)1//CN.'.m(cid:5)1/;u/; (13) tt andsubjecttotheinitialconditions(5), where,now,u0 andu1 aregivenfunctions definedonR2m.WerefertothisCauchyproblem,thatis,explicitly,to(13)C(12)C (5),as“problem(VKH)”. Problem(VKH)appearstobeanalogoustotheoriginalvonKarmansystem(3) and(4)onR2,butthisanalogyisonlyformal,inthefollowingsense.Letddenote the space dimension. In the linear part at the left side of Eqs.(3) and (4) of the original system, the order of the differential operator (cid:3)2 is twice the dimension of space (i.e., 4 D 2d, d D 2), and the nonlinear operators of Monge-Ampère typeattherightsideoftheequationsaredefinedintermsofthecompleteHessian of functions depending on u, f, and '. In contrast, at the left side of Eqs.(13) and(12)theorderofthedifferentialoperator(cid:3)mequalsthedimensionofspace(i.e., 2m D d), while the Monge-Ampèreoperatorsat the right side of these equations aredefinedintermsofelementarysymmetricfunctionsoforderm D d ofHessian 2 matricesoffunctionsdependingonu,f,and'.Toillustratethisdifferenceexplicitly, intheoriginalequation(4)thetermN.u;u/istwicethedeterminantoftheHessian

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.