Journal of Technology Education Vol. 23 No. 1, Fall 2011 Analysis of Engineering Content within Technology Education Programs Technology Education’s Inclusion of Engineering In the mid-1980s, technology education began to evolve from industrial arts curriculum (Lewis, 2004). Several developments in the field helped promote the technology education curriculum movement, including the Jackson’s Mill Curriculum Theory Project (Snyder & Hales, 1981), the Standards for Technology Education Project (Dugger, 1985), and the development of a Conceptual Framework for Technology Education (Savage & Sterry, 1990). Since this evolution, technology educators have struggled to promote a human productive practice as a legitimate school subject, with the intent of producing technologically literate students (Lewis, 2005). The change of name and content to technology education was just another in a series since the inception of the practice. Previous industrial arts and technology education curriculum and content framing efforts in the United States include the Industrial Arts Curriculum Project, Maryland Plan, Jackson’s Mill, and Technology for All Americans Project (Hill, 2006). The current movement involves incorporating engineering design as a focal point for technology education. Some technology education leaders believe that the incorporation of engineering in technology education will lead to greater technological literacy and promote engineering as a career choice (Lewis, 2005). It is important to recognize the differences between technology and engineering. Technology can be defined as any modification of the natural world done to fulfill human needs or desires (Garmire & Pearson, 2006). Technology education, therefore, can be seen as the study of the history of technology, positive attributes and consequences of technology, and the development of the ability to use, manage, evaluate, and understand technology. Broadly stated, this is the definition of technological literacy. Engineers, on the other hand, are the people responsible for designing the technologies that modify the world. Engineering is a systematic and often iterative approach to designing objects, processes, and systems to meet human needs and wants (National Research Council, 2011). The motivation for adding engineering content into the existing K-12 educational system is strong and continues to gain momentum (Katehi, Pearson, & Feder, 2009). There are many reasons for increased interest in K-12 engineering. Starting with the most general, the 21st century world is an environment designed for human comfort. Buildings, clothes, cars, clean water, Todd D. Fantz ([email protected]) is an Assistant Professor and Technology Education Program Director and Petros J. Katsioloudis ([email protected]) is an Assistant Professor and Industrial Technology Program Director in the Department of STEM Education and Professional Studies at Old Dominion University. -19- Journal of Technology Education Vol. 23 No. 1, Fall 2011 indoor climate control, personal technologies, and nearly everything else people encounter in daily life are designed by the engineering community, which focuses on meeting the needs of society. Citizens need to be literate in technology and familiar with the engineering behind these technologies in order to make informed and responsible decisions. Adding engineering to the K-12 educational system will help create a technologically literate society (Pinelli & Haynie, 2010). Similar to products or goods, engineering affects the economic health of the country. It is a national resource needed to be competitive with other countries in an increasingly technologically competitive atmosphere (Augustine, 2005). Technological innovations are a direct result of the work done by engineers. Engineers translate their understanding of fundamental science and mathematics into usable objects and applications that improve our lives, create new jobs and industries, and extend the frontiers of human possibility. The addition of engineering in secondary curriculum will help feed the engineering pipeline by exposing students to engineering content during their middle school and high school years (Pinelli & Haynie, 2010). From a pedagogical perspective, engineering is the link that ties together mathematics and science (Katehi, et al., 2009). By providing context to the content, engineering and the engineering design process can bring to life sometimes abstract, difficult topics. Research shows that the integrative, applied nature of engineering can enhance student learning, boost test scores, and help schools meet standards-driven education requirements (Baker, 2005; Silk, Schunn, & Strand Cary, 2009). The use of engineering design provides practical classroom benefits for both educators and students. The collaborative, socially beneficial aspects of engineering have also been shown to appeal to students whom the field has traditionally failed to engage, including females and underrepresented minorities (Geddis, Onslow, Beynon, & Oesch, 1993; Wiest, 2004). The purposeful move to include engineering was evidenced in 2009 by the International Technology Educators Association (ITEA) changing its name to the International Technology and Engineering Educators Association (ITEEA) (NRC, 2009). Following suit, the flagship technology education practitioner’s journal, The Technology Teacher, also changed its name to The Technology and Engineering Teacher. Researchers are also very interested in methods and the effects of including engineering in the curriculum. After examining published research in prominent engineering journals and conferences, Williams (2011) found that the topics “design” and “curriculum” (including engineering in the curriculum) were the first and second most researched topics (Williams, 2011). Technology teachers in the field have also embraced the idea of including engineering into technology curriculum. This is demonstrated by the development of several technology education courses that promote pre- engineering, such as Project ProBase’s Principles of Engineering and Project -20- Journal of Technology Education Vol. 23 No. 1, Fall 2011 Lead the Way’s Principles of Technology, Engineering Technology, and Introduction to Engineering (Dearing & Daugherty, 2004). Teacher Preparation In order to effectively teach engineering, technology teachers need to be taught engineering content, concepts, and related pedagogy (Dearing & Daugherty, 2004; Fantz, De Miranda, & Siller, 2011). Some researchers posit that technology education programs may not have enough content to prepare technology teachers to teach engineering design (McAlister, 2005). Certain technology teacher education programs have responded by changing the programs’ name to include engineering. However, a change of name does not necessarily indicate a change of content or pedagogy offered by the institutions. Therefore, this study is aimed at examining the differences between technology education programs that have adopted engineering into their name and those that have not. These technology education programs should not be confused with programs aimed specifically at studying methods of engineering education, such as Purdue University’s and Virginia Tech’s engineering education programs. Research Questions To determine the differences between traditional technology education programs and newer programs that have engineering embedded within their title, the authors developed two research questions. 1. Is there a different amount of engineering content between technology programs with the term “engineering” in their program title and technology programs without it? 2. Is there a different amount of engineering content between technology programs housed in engineering colleges and technology programs housed in colleges other than engineering? Methodology The data for this investigation is made up of undergraduate licensing technology education programs in US colleges and universities. The search for programs began with the list of 49 International Technology and Engineering Educators Association (ITEEA) institutional members (ITEEA, 2010). The website for each institution was visited and searched for a description of the technology education program. It should be noted that the websites were visited in the fall of 2010. This study is a snapshot in time of these technology education programs and may include some programs that were in the process of transitioning toward the inclusion of engineering, but had not yet changed titles, course names, or content. Due to the nature of the study and access restrictions, the data collection was limited to online catalogs and program descriptions. Eight technology education programs with engineering anywhere in the title were identified and included in the study. To gain more insight into the types of -21- Journal of Technology Education Vol. 23 No. 1, Fall 2011 courses for each program, online college and university catalogs describing the graduation requirements for a bachelor’s degree in technology education and associated course titles were searched and downloaded into a database. For comparison, eleven technology education programs housed in various colleges that did not have engineering in their title were selected at random. See Table 1(continued onto next page) for the list of all institutions investigated in this preliminary study. Institutions 1-8 have technology education licensing programs with engineering in the program title. Institutions 8-19 have technology education programs without engineering in the title. Table 1 Technology Education Programs Included in the Preliminary Study College/University Title of Program Housed In 1 Central Connecticut Technology & Engineering School of University Education Engineering 2 Colorado State Engineering Education College of University Engineering 3 Eastern Kentucky Engineering/Technology College of University Education Business 4 Indiana State Technology and Engineering College of University Education Technology 5 North Carolina State Technology, Engineering & College of University Design Education Education 6 Purdue University Engineering/Technology College of Teacher Education Technology 7 The College of New K-12 Pre-Engineering School of Jersey Education Engineering 8 Utah State University Engineering and Technology College of Education Engineering 9 Appalachian State Technology Education College of Fine University and Applied Arts 10 Ball State University Technology Teacher College of Education Applied Sciences and Technology 11 Bowling Green State Technology Education College of University Program Technology -22- Journal of Technology Education Vol. 23 No. 1, Fall 2011 12 Buffalo State College Technology Education Technology Department 13 California University Technology Education Applied of Pennsylvania Engineering and Technology Department 14 Pittsburg State Technology Education College of University Technology 15 Rhode Island College Technology Education Department of Education 16 St. Cloud State Technology Education College of University Science & Engineering 17 State University of Technology Education All School of New York (Oswego) Grades Education 18 University of Arkansas Technology Education College of Education 19 University of Central Technology Education College of Missouri Education A database was created to categorize where the technology education program is housed and the number of credit hours of engineering coursework. A course was considered to have engineering content if the word “engineering” was present in the course title or catalog description of the course. Other courses that are typically found in Accreditation Board for Engineering and Technology (ABET) accredited engineering programs, such as statics, dynamics, and mechanics of materials, were also defined as engineering coursework. Other foundational courses such as physics, chemistry, and mathematics were not counted as having engineering content. While not all-inclusive, Table 2 shows the most common course titles in the programs included in this study and how they were categorized. The number of credits for engineering related coursework and the number of credits for technology related coursework were entered into a spreadsheet, as shown in Table 3. The program was identified as being housed in a college of engineering if the term engineering was used anywhere in the college’s title. The categorization of where the programs are housed is also shown in Table 3. -23- Journal of Technology Education Vol. 23 No. 1, Fall 2011 Table 2 Engineering vs. Non-Engineering Course Titles Engineering Course Titles Non-Engineering Course Titles Civil Engineering and Architecture Automated Systems Dynamics (Engineering Mechanics II) CAD Electrical Engineering Communications Engineering Design Construction Engineering Math Electricity/Electronics Mechanics and Strengths of Materials Energy and Power Mechatronics Graphics Orientation to Engineering Manufacturing Statics (Engineering Mechanics I) Production Thermodynamics and Fluid Systems Publishing Transportation -24- Journal of Technology Education Vol. 23 No. 1, Fall 2011 Table 3 Number of Technology and Engineering Course Credits Technology Engineering Housed In College/University Credits Credits Central Connecticut 1 24 9 Engineering University Colorado State 2 0 42 Engineering University Eastern Kentucky Non- 3 30 3 University Engineering Non- 4 Indiana State University 27 0 Engineering North Carolina State Non- 5 31 0 University Engineering Non- 6 Purdue University 27 3 Engineering The College of New 7 9 27 Engineering Jersey 8 Utah State University 9 20 Engineering Appalachian State Non- 9 19 0 University Engineering Non- 10 Ball State University 21 3 Engineering Bowling Green State 11 12 12 Engineering University 12 Buffalo State College 27 0 Engineering California University of 13 27 12 Engineering Pennsylvania Non- 14 Pittsburg State University 29 0 Engineering Non- 15 Rhode Island College 27 0 Engineering St. Cloud State 16 24 3 Engineering University State University of New Non- 17 39 0 York (Oswego) Engineering Non- 18 University of Arkansas 24 5 Engineering University of Central Non- 19 16 6 Missouri Engineering -25- Journal of Technology Education Vol. 23 No. 1, Fall 2011 The data were entered into a statistical software package, SPSS 17, and coded to reflect where the program is housed and the use of engineering in the title. The data were evaluated for normality of distribution and determined to be in violation. Therefore, non-parametric statistics were used in analyzing the data. A Mann-Whitney test was performed to find differences in engineering content between the groups of programs with engineering in the title and those without engineering in the title. A Mann-Whitney test was also done to find differences in engineering content based on whether the program was housed in a college of engineering versus a college of education. In addition, effect sizes were calculated using Cohen’s r (Cohen, 1988). Effect sizes provide a standardized method for comparing results to determine the strength of relationship between variables (Field, 2005). An effect size of 0 means there was no effect from the engineering exposure, and an effect size of 0.8 corresponds to a large effect from the exposure (Morgan, Leach, Gloeckner, & Barrett, 2007). Cohen’s r was calculated by dividing the z-score by the square-root of the sample size, N (Field, 2005). A two-way or factorial ANOVA was also done to explore interactions between the two independent variables, engineering in the title and where the program is housed. Findings To compare technology education programs that have adopted the term engineering into their title with those that have not, a Mann-Whitney test comparing the engineering content was executed. As shown in Table 4, programs not having engineering in the title (Mdn = 3.0) did not statistically differ from programs with engineering in the title (Mdn = 6.0), U = 29.0, ns. The effect size, using Cohen’s r, is approximately -0.29, which is a medium effect (Cohen, 1988). Table 4 Mann-Whitney Test for Engineering Content Based on Program Title Containing Engineering Group Median SD Mean U p r Rank Engineering Not 3.00 4.63 8.64 29.0 0.20 -0.29 in Title Engineering in 6.00 15.30 11.88 Title -26- Journal of Technology Education Vol. 23 No. 1, Fall 2011 A similar analysis was done to determine any statistically significant differences between technology education programs housed in colleges of engineering and technology education programs housed in other colleges, regardless of the program title. As shown in Table 5, there was a statistically significant difference between the two groups, U = 11.5, p = 0.006. The effect size, r, also increased from the previous grouping to -0.63. This is considered to be a large effect (Cohen, 1988). Table 5 Mann-Whitney Test for Engineering Content Based on Where Programs are Housed Group Median SD Mean U p r Rank Housed in 12.0 13.72 14.06 11.50 0.006 -0.63 Engineering Housed 0.00 2.27 7.05 Elsewhere To gain a better understanding of how the two independent variables (engineering in the title and where the program is housed) react with each other, a two-way or factorial ANOVA was used. Table 6 (next page) shows the means and standard deviations for engineering content separately for the engineering in the title groups and where the program is housed groups. Note that due to the small sample size of the preliminary study, the segregated group of programs with engineering in the title that also resides in a college of education only has one program. As statistical significance and power are directly related to sample size, these preliminary results should be looked at cautiously and used to guide or inform a more in depth study and not to draw conclusions. As shown in Table 7, there was not a significant interaction between engineering in the program title and where the program is housed (p = 0.44). There was also not a statistically significant effect of engineering in the title on engineering content, F (1, 14) = 0.08, p = 0.78, or where the program is housed and engineering content, F (1, 14) = 2.11, p = 0.17. However, this result could be attributed to the small sample sizes of the segregated groups. -27- Journal of Technology Education Vol. 23 No. 1, Fall 2011 Table 6 Means and Standard Deviations Segregated by Title and Where Housed Engineering Not in Engineering in the Title Title Total Housed n M SD n M SD M SD Education 6 2.33 2.73 1 0 ------ 2.00 2.65 Engineering 5 5.40 6.15 6 10.33 10.84 8.09 8.97 Total 11 3.73 4.63 7 8.86 10.64 5.72 7.69 Table 7 Results of the Two-Way ANOVA Variable and Source df MS F p Eng. in Title 1 4.41 0.08 0.78 Housed 1 117.10 2.11 0.17 Eng. in Title*Housed 1 34.44 0.62 0.44 Error 14 55.42 Conclusions and Discussion This study was done to determine the differences in engineering content offered by technology education licensing programs. In particular, the study compared programs that acknowledged engineering content in their program by adding the term engineering to the program’s title to programs that did not. In addition, this study looked at the differences between technology education programs housed in colleges of engineering versus programs housed in colleges of education, technology, business, fine arts, etc. It was found that programs with engineering in the title did not significantly differ in their engineering content from programs without a change in name. This could indicate that some programs have adopted the term engineering into their title without increasing the engineering content of their program. If this is the case, a technology teacher graduating from a program with engineering in the title would not be any more prepared to teach engineering content than graduates from a traditional technology education program. An alternative, and more positive, view is that technology programs are increasing engineering content without changing their name. It should be noted that the average number of engineering content credits of all the programs is only 7.63 (more than two courses). Regardless of the name or location, this amount of engineering content seems low compared to requirements to teach in other content areas. When the groups were segregated based on where they were located within the university or college, regardless of the name, significant differences in engineering content were found. Technology education programs in colleges outside of engineering had a mean of 2.0 engineering content credits (less than -28-