ebook img

Environmental Science, Technology, and Chemistry PDF

743 Pages·2006·3.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Environmental Science, Technology, and Chemistry

Manahan, Stanley E. "ENVIRONMENTAL SCIENCE, TECHNOLOGY, AND CHEMISTRY" Environmental Chemistry Boca Raton: CRC Press LLC, 2000 1 ENVIRONMENTAL SCIENCE, TECHNOLOGY, AND CHEMISTRY __________________________ __________________________ 1.1. WHAT IS ENVIRONMENTAL SCIENCE? This book is about environmental chemistry. To understand that topic, it is important to have some appreciation of environmental science as a whole. Environmental science in its broadest sense is the science of the complex interactions that occur among the terrestrial, atmospheric, aquatic, living, and anthropological environments. It includes all the disciplines, such as chemistry, biology, ecology, sociology, and government, that affect or describe these interactions. For the purposes of this book, environmental science will be defined as the study of the earth, air, water, and living environments, and the effects of technology thereon. To a significant degree, environmental science has evolved from investigations of the ways by which, and places in which, living organisms carry out their life cycles. This is the discipline of natural history, which in recent times has evolved into ecology, the study of environmental factors that affect organisms and how organisms interact with these factors and with each other.1 For better or for worse, the environment in which all humans must live has been affected irrreversibly by technology. Therefore, technology is considered strongly in this book in terms of how it affects the environment and in the ways by which, applied intelligently by those knowledgeable of environmental science, it can serve, rather than damage, this Earth upon which all living beings depend for their welfare and existence. The Environment Air, water, earth, life, and technology are strongly interconnected as shown in Figure 1.1. Therefore, in a sense this figure summarizes and outlines the theme of the rest of this book. © 2000 CRC Press LLC Figure 1.1. Illustration of the close relationships among the air, water, and earth environments with each other and with living systems, as well as the tie-in with technology (the anthrosphere). Traditionally, environmental science has been divided among the study of the atmosphere, the hydrosphere, the geosphere, and the biosphere. The atmosphere is the thin layer of gases that cover Earth’s surface. In addition to its role as a reservoir of gases, the atmosphere moderates Earth’s temperature, absorbs energy and damag- ing ultraviolet radiation from the sun, transports energy away from equatorial regions, and serves as a pathway for vapor-phase movement of water in the hydro- logic cycle. The hydrosphere contains Earth’s water. Over 97% of Earth’s water is in oceans, and most of the remaining fresh water is in the form of ice. Therefore, only a relatively small percentage of the total water on Earth is actually involved with terrestrial, atmospheric, and biological processes. Exclusive of seawater, the water that circulates through environmental processes and cycles occurs in the atmosphere, underground as groundwater, and as surface water in streams, rivers, lakes, ponds, and reservoirs. The geosphere consists of the solid earth, including soil, which supports most plant life. The part of the geosphere that is directly involved with environmental processes through contact with the atmosphere, the © 2000 CRC Press LLC hydrosphere, and living things is the solid lithosphere. The lithosphere varies from 50 to 100 km in thickness. The most important part of it insofar as interactions with the other spheres of the environment are concerned is its thin outer skin composed largely of lighter silicate-based minerals and called the crust. All living entities on Earth compose the biosphere. Living organisms and the aspects of the environment pertaining directly to them are called biotic, and other portions of the environment are abiotic. To a large extent, the strong interactions among living organisms and the various spheres of the abiotic environment are best described by cycles of matter that involve biological, chemical, and geological processes and phenomena. Such cycles are called biogeochemical cycles, and are discussed in more detail in Section 1.6 and elsewhere in this book. 1.2. ENVIRONMENTAL CHEMISTRY AND ENVIRONMENTAL BIOCHEMISTRY Environmental chemistry encompasses many diverse topics. It may involve a study of Freon reactions in the stratosphere or an analysis of PCB deposits in ocean sediments. It also covers the chemistry and biochemistry of volatile and soluble organometallic compounds biosynthesized by anaerobic bacteria. Literally thousands of other examples of environmental chemical phenomena could be given. Environmental chemistry may be defined as the study of the sources, reactions, transport, effects, and fates of chemical species in water, soil, air, and living environments, and the effects of technology thereon. Environmental chemistry is not a new discipline. Excellent work has been done in this field for the greater part of a century. Until about 1970, most of this work was done in academic departments or industrial groups other than those primarily concerned with chemistry. Much of it was performed by people whose basic education was not in chemistry. Thus, when pesticides were synthesized, biologists observed firsthand some of the less desirable consequences of their use. When detergents were formulated, sanitary engineers were startled to see sewage treatment plant aeration tanks vanish under meter-thick blankets of foam, while limnologists wondered why previously normal lakes suddenly became choked with stinking cyanobacteria. Despite these long standing environmental effects, and even more recent and serious problems, such as those from hazardous wastes, relatively few chemists have been exposed to material dealing with environmental chemistry as part of their education. Environmental Chemistry and the Environmental Chemist An encouraging trend is that in recent years many chemists have become deeply involved with the investigation of environmental problems. Academic chemistry departments have found that environmental chemistry courses appeal to students, and many graduate students are attracted to environmental chemistry research. Help- wanted ads have included significant numbers of openings for environmental chem- ists among those of the more traditional chemical subdisciplines. Industries have found that well-trained environmental chemists at least help avoid difficulties with © 2000 CRC Press LLC regulatory agencies, and at best are instrumental in developing profitable pollution- control products and processes. Some background in environmental chemistry should be part of the training of every chemistry student. The ecologically illiterate chemist can be a very dangerous species. Chemists must be aware of the possible effects their products and processes might have upon the environment. Furthermore, any serious attempt to solve environmental problems must involve the extensive use of chemicals and chemical processes. There are some things that environmental chemistry is not. It is not just the same old chemistry with a different cover and title. Because it deals with natural systems, it is more complicated and difficult than “pure” chemistry. Students sometimes find this hard to grasp, and some traditionalist faculty find it impossible. Accustomed to the clear-cut concepts of relatively simple, well-defined, though often unrealistic systems, they may find environmental chemistry to be poorly delineated, vague, and confusing. More often than not, it is impossible to come up with a simple answer to an environmental chemistry problem. But, building on an ever-increasing body of knowledge, the environmental chemist can make educated guesses as to how environmental systems will behave. Chemical Analysis in Environmental Chemistry One of environmental chemistry’s major challenges is the determination of the nature and quantity of specific pollutants in the environment. Thus, chemical analysis is a vital first step in environmental chemistry research. The difficulty of analyzing for many environmental pollutants can be awesome. Significant levels of air pollutants may consist of less than a microgram per cubic meter of air. For many water pollutants, one part per million by weight (essentially 1 milligram per liter) is a very high value. Environmentally significant levels of some pollutants may be only a few parts per trillion. Thus, it is obvious that the chemical analyses used to study some environmental systems require a very low limit of detection. However, environmental chemistry is not the same as analytical chemistry, which is only one of the many subdisciplines that are involved in the study of the chemistry of the environment. Although a “brute-force” approach to environmental control, involving attempts to monitor each environmental niche for every possible pollutant, increases employment for chemists and raises sales of analytical instru- ments, it is a wasteful way to detect and solve environmental problems, degenerating into a mindless exercise in the collection of marginally useful numbers. Those responsible for environmental protection must be smarter than that. In order for chemistry to make a maximum contribution to the solution of environmental problems, the chemist must work toward an understanding of the nature, reactions, and transport of chemical species in the environment. Analytical chemistry is a fundamental and crucial part of that endeavor. Environmental Biochemistry The ultimate environmental concern is that of life itself. The discipline that deals specifically with the effects of environmental chemical species on life is © 2001 CRC Press LLC environmental biochemistry. A related area, toxicological chemistry, is the chemistry of toxic substances with emphasis upon their interactions with biologic tissue and living organisms.2 Toxicological chemistry, which is discussed in detail in Chapters 22 and 23, deals with the chemical nature and reactions of toxic sub- stances and involves their origins, uses, and chemical aspects of exposure, fates, and disposal. 1.3. WATER, AIR, EARTH, LIFE, AND TECHNOLOGY In light of the above definitions, it is now possible to consider environmental chemistry from the viewpoint of the interactions among water, air, earth, life, and the anthrosphere outlined in Figure 1.1. These five environmental “spheres” and the interrelationships among them are summarized in this section. In addition, the chap- ters in which each of these topics is discussed in greater detail are designated here. Water and the Hydrosphere Water, with a deceptively simple chemical formula of H O, is a vitally important 2 substance in all parts of the environment. Water covers about 70% of Earth’s surface. It occurs in all spheres of the environment—in the oceans as a vast reservoir of saltwater, on land as surface water in lakes and rivers, underground as groundwater, in the atmosphere as water vapor, in the polar icecaps as solid ice, and in many segments of the anthrosphere such as in boilers or municipal water distribution systems. Water is an essential part of all living systems and is the medium from which life evolved and in which life exists. Energy and matter are carried through various spheres of the environment by water. Water leaches soluble constituents from mineral matter and carries them to the ocean or leaves them as mineral deposits some distance from their sources. Water carries plant nutrients from soil into the bodies of plants by way of plant roots. Solar energy absorbed in the evaporation of ocean water is carried as latent heat and released inland. The accompanying release of latent heat provides a large fraction of the energy that is transported from equatorial regions toward Earth’s poles and powers massive storms. Water is obviously an important topic in environmental sciences. Its environ- mental chemistry is discussed in detail in Chapters 3-8. Air and the Atmosphere The atmosphere is a protective blanket which nurtures life on the Earth and protects it from the hostile environment of outer space. It is the source of carbon dioxide for plant photosynthesis and of oxygen for respiration. It provides the nitrogen that nitrogen-fixing bacteria and ammonia-manufacturing industrial plants use to produce chemically-bound nitrogen, an essential component of life molecules. As a basic part of the hydrologic cycle (Chapter 3, Figure 3.1), the atmosphere transports water from the oceans to land, thus acting as the condenser in a vast solar- powered still. The atmosphere serves a vital protective function, absorbing harmful ultraviolet radiation from the sun and stabilizing Earth’s temperature. © 2000 CRC Press LLC Atmospheric science deals with the movement of air masses in the atmosphere, atmospheric heat balance, and atmospheric chemical composition and reactions. Atmospheric chemistry is covered in this book in Chapters 9–14. Earth The geosphere, or solid Earth, discussed in general in Chapter 15, is that part of the Earth upon which humans live and from which they extract most of their food, minerals, and fuels. The earth is divided into layers, including the solid, iron-rich inner core, molten outer core, mantle, and crust. Environmental science is most concerned with the lithosphere, which consists of the outer mantle and the crust. The latter is the earth’s outer skin that is accessible to humans. It is extremely thin compared to the diameter of the earth, ranging from 5 to 40 km thick. Geology is the science of the geosphere. As such, it pertains mostly to the solid mineral portions of Earth’s crust. But it must also consider water, which is involved in weathering rocks and in producing mineral formations; the atmosphere and climate, which have profound effects on the geosphere and interchange matter and energy with it; and living systems, which largely exist on the geosphere and in turn have significant effects on it. Geological science uses chemistry in the form of geochemistry to explain the nature and behavior of geological materials, physics to explain their mechanical behavior, and biology to explain the mutual interactions between the geosphere and the biosphere.3 Modern technology, for example the ability to move massive quantities of dirt and rock around, has a profound influence on the geosphere. The most important part of the geosphere for life on earth is soil formed by the disintegrative weathering action of physical, geochemical, and biological processes on rock. It is the medium upon which plants grow, and virtually all terrestrial organisms depend upon it for their existence. The productivity of soil is strongly affected by environmental conditions and pollutants. Because of the importance of soil, all of Chapter 16 is devoted to it. Life Biology is the science of life. It is based on biologically synthesized chemical species, many of which exist as large molecules called macromolecules. As living beings, the ultimate concern of humans with their environment is the interaction of the environment with life. Therefore, biological science is a key component of environmental science and environmental chemistry The role of life in environmental science is discussed in numerous parts of this book. For example, the crucial effects of microorganisms on aquatic chemistry are covered in Chapter 6, “Aquatic Microbial Biochemistry.” Chapter 21, “Environmental Biochemistry,” addresses biochemistry as it applies to the environment. The effects on living beings of toxic substances, many of which are environmental pollutants, are addressed in Chapter 22, “Toxicological Chemistry,” and Chapter 23, “Toxicological Chemistry of Chemical Substances.” Other chapters discuss aspects of the interaction of living systems with various parts of the environment. © 2000 CRC Press LLC The Anthrosphere and Technology Technology refers to the ways in which humans do and make things with materials and energy. In the modern era, technology is to a large extent the product of engineering based on scientific principles. Science deals with the discovery, explanation, and development of theories pertaining to interrelated natural phenomena of energy, matter, time, and space. Based on the fundamental knowledge of science, engineering provides the plans and means to achieve specific practical objectives. Technology uses these plans to carry out the desired objectives. It is essential to consider technology, engineering, and industrial activities in studying environmental science because of the enormous influence that they have on the environment. Humans will use technology to provide the food, shelter, and goods that they need for their well-being and survival. The challenge is to interweave technology with considerations of the environment and ecology such that the two are mutually advantageous rather than in opposition to each other. Technology, properly applied, is an enormously positive influence for environ- mental protection. The most obvious such application is in air and water pollution control. As necessary as “end-of-pipe” measures are for the control of air and water pollution, it is much better to use technology in manufacturing processes to prevent the formation of pollutants. Technology is being used increasingly to develop highly efficient processes of energy conversion, renewable energy resource utilization, and conversion of raw materials to finished goods with minimum generation of haz- ardous waste by-products. In the transportation area, properly applied technology in areas such as high speed train transport can enormously increase the speed, energy efficiency, and safety of means for moving people and goods. Until very recently, technological advances were made largely without heed to environmental impacts. Now, however, the greatest technological challenge is to reconcile technology with environmental consequences. The survival of humankind and of the planet that supports it now requires that the established two-way interaction between science and technology become a three-way relationship including environmental protection. 1.4. ECOLOGY AND THE BIOSPHERE The Biosphere The biosphere is the name given to that part of the environment consisting of organisms and living biological material. Virtually all of the biosphere is contained by the geosphere and hydrosphere in the very thin layer where these environmental spheres interface with the atmosphere. There are some specialized life forms at extreme depths in the ocean, but these are still relatively close to the atmospheric interface. The biosphere strongly influences, and in turn is strongly influenced by, the other parts of the environment. It is believed that organisms were responsible for converting Earth’s original reducing atmosphere to an oxygen-rich one, a process that also resulted in the formation of massive deposits of oxidized minerals, such as © 2000 CRC Press LLC iron in deposits of Fe O . Photosynthetic organisms remove CO from the 2 3 2 atmosphere, thus preventing runaway greenhouse warming of Earth’s surface. Organisms strongly influence bodies of water, producing biomass required for life in the water and mediating oxidation-reduction reactions in the water. Organisms are strongly involved with weathering processes that break down rocks in the geosphere and convert rock matter to soil. Lichens, consisting of symbiotic (mutually advantageous) combinations of algae and fungi, attach strongly to rocks; they secrete chemical species that slowly dissolve the rock surface and retain surface moisture that promotes rock weathering. The biosphere is based upon plant photosynthesis, which fixes solar energy (hn ) and carbon from atmospheric CO in the form of high-energy biomass, represented 2 as {CH O}: 2 hn CO + H O fi {CH O} + O (g) (1.4.1) 2 2 2 2 In so doing, plants and algae function as autotrophic organisms, those that utilize solar or chemical energy to fix elements from simple, nonliving inorganic material into complex life molecules that compose living organisms. The opposite process, biodegradation, breaks down biomass either in the presence of oxygen (aerobic respiration), {CH O} + O (g) fi CO + H O (1.4.2) 2 2 2 2 or absence of oxygen (anaerobic respiration): 2{CH O} fi CO (g) + CH (g) (1.4.3) 2 2 4 Both aerobic and anaerobic biodegradation get rid of biomass and return carbon dioxide to the atmosphere. The latter reaction is the major source of atmospheric methane. Nondegraded remains of these processes constitute organic matter in aquatic sediments and in soils, which has an important influence on the characteristics of these solids. Carbon that was originally fixed photosynthetically forms the basis of all fossil fuels in the geosphere. There is a strong interconnection between the biosphere and the anthrosphere. Humans depend upon the biosphere for food, fuel, and raw materials. Human influence on the biosphere continues to change it drastically. Fertilizers, pesticides, and cultivation practices have vastly increased yields of biomass, grains, and food. Destruction of habitat is resulting in the extinction of vast numbers of species, in some cases even before they are discovered. Bioengineering of organisms with recombinant DNA technology and older techniques of selection and hybridization are causing great changes in the characteristics of organisms and promise to result in even more striking alterations in the future. It is the responsibility of humankind to make such changes intelligently and to protect and nurture the biosphere. Ecology Ecology is the science that deals with the relationships between living organisms with their physical environment and with each other.4 Ecology can be approached © 2000 CRC Press LLC from the viewpoints of (1) the environment and the demands it places on the organ- isms in it or (2) organisms and how they adapt to their environmental conditions. An ecosystem consists of an assembly of mutually interacting organisms and their environment in which materials are interchanged in a largely cyclical manner. An ecosystem has physical, chemical, and biological components along with energy sources and pathways of energy and materials interchange. The environment in which a particular organism lives is called its habitat. The role of an organism in a habitat is called its niche. For the study of ecology it is often convenient to divide the environment into four broad categories. The terrestrial environment is based on land and consists of biomes, such as grasslands, savannas, deserts, or one of several kinds of forests. The freshwater environment can be further subdivided between standing-water habitats (lakes, reservoirs) and running-water habitats (streams, rivers). The oceanic marine environment is characterized by saltwater and may be divided broadly into the shallow waters of the continental shelf composing the neritic zone and the deeper waters of the ocean that constitute the oceanic region. An environment in which two or more kinds of organisms exist together to their mutual benefit is termed a symbiotic environment. A particularly important factor in describing ecosystems is that of populations consisting of numbers of a specific species occupying a specific habitat. Populations may be stable, or they may grow exponentially as a population explosion. A population explosion that is unchecked results in resource depletion, waste accumulation, and predation culminating in an abrupt decline called a population crash. Behavior in areas such as hierarchies, territoriality, social stress, and feeding patterns plays a strong role in determining the fates of populations. Two major subdivisions of modern ecology are ecosystem ecology, which views ecosystems as large units, and population ecology, which attempts to explain eco- system behavior from the properties of individual units. In practice, the two approaches are usually merged. Descriptive ecology describes the types and nature of organisms and their environment, emphasizing structures of ecosystems and communities, and dispersions and structures of populations. Functional ecology explains how things work in an ecosystem, including how populations respond to environmental alteration and how matter and energy move through ecosystems. An understanding of ecology is essential in the management of modern industri- alized societies in ways that are compatible with environmental preservation and enhancement. Applied ecology deals with predicting the impacts of technology and development and making recommendations such that these activities will have minimum adverse impact, or even positive impact, on ecosystems. 1.5. ENERGY AND CYCLES OF ENERGY Biogeochemical cycles and virtually all other processes on Earth are driven by energy from the sun. The sun acts as a so-called blackbody radiator with an effective surface temperature of 5780 K (absolute temperature in which each unit is the same as a Celsius degree, but with zero taken at absolute zero).5 It transmits energy to Earth as electromagnetic radiation (see below) with a maximum energy flux at about 500 nanometers, which is in the visible region of the spectrum. A 1-square-meter © 2000 CRC Press LLC

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.