ebook img

Engineering mathematics with MATLAB PDF

756 Pages·2018·35.025 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Engineering mathematics with MATLAB

ENGINEERING MATHEMATICS MATLAB® with ENGINEERING MATHEMATICS MATLAB® with Won Y. Yang Young K. Choi Jaekwon Kim Man Cheol Kim H. Jin Kim Taeho Im CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20171028 International Standard Book Number-13: 978-1-138-05933-7 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com To our parents and families who love and support us and to our teachers and students who enriched our knowledge vii Contents PREFACE XIII Chapter 1: Vectors and Matrices .................................................................................................... 1 1.1 Vectors ..................................................................................................................................... 1 1.1.1 Geometry with Vector .................................................................................................. 1 1.1.2 Dot Product .................................................................................................................. 2 1.1.3 Cross Product ............................................................................................................... 6 1.1.4 Lines and Planes ........................................................................................................... 9 1.1.5 Vector Space .............................................................................................................. 17 1.1.6 Coordinate Systems .................................................................................................... 18 1.1.7 Gram–Schmidt Orthonolization ................................................................................. 29 1.2 Matrices ................................................................................................................................. 32 1.2.1 Matrix Algebra ........................................................................................................... 32 1.2.2 Rank and Row/Column Spaces .................................................................................. 32 1.2.3 Determinant and Trace ............................................................................................... 34 1.2.4 Eigenvalues and Eigenvectors .................................................................................... 35 1.2.5 Inverse of a Matrix ..................................................................................................... 39 1.2.6 Similarity Transformation and Diagonalization ......................................................... 42 1.2.7 Special Matrices ......................................................................................................... 44 1.2.8 Positive Definiteness .................................................................................................. 47 1.2.9 Matrix Inversion Lemma ............................................................................................ 48 1.2.10 LU, Cholesky, QR, and Singular Value Decompositions ........................................... 49 1.2.11 Geometrical Meaning of Eigenvalues/Eigenvectors ................................................... 50 1.3 Systems of Linear Equations ............................................................................................... 55 1.3.1 Nonsingular Case ....................................................................................................... 55 1.3.2 Undetermined Case — Minimum-Norm Solution.................................................... 56 1.3.3 Overdetermined Case — Least-Squares Error Solution ........................................... 58 1.3.4 Gauss(ian) Elimination ............................................................................................... 61 1.3.5 RLS (Recursive Least Squares) Algorithm ................................................................ 65 Problems ....................................................................................................................................... 69 Chapter 2: Vector Calculus ............................................................................................................ 99 2.1 Derivatives ............................................................................................................................. 99 2.2 Vector Functions ................................................................................................................. 104 2.3 Velocity and Acceleration .................................................................................................. 107 2.4 Divergence and Curl........................................................................................................... 113 2.5 Line Integrals and Path Independence ............................................................................. 127 2.5.1 Line Integrals ............................................................................................................ 127 2.5.2 Path Independence .................................................................................................... 132 2.6 Double Integrals ................................................................................................................. 134 2.7 Green's Theorem ................................................................................................................ 138 2.8 Surface Integrals ................................................................................................................. 142 2.9 Stokes' Theorem ................................................................................................................. 149 viii Contents 2.10 Triple Integrals .................................................................................................................... 155 2.11 Divergence Theorem ........................................................................................................... 160 Problems ..................................................................................................................................... 169 Chapter 3: Ordinary Differential Equations ......................................................................191 3.1 First-Order Differential Equations ................................................................................... 192 3.1.1 Separable Equations ................................................................................................. 192 3.1.2 Exact Differential Equations and Integrating Factors ............................................. 195 3.1.3 Linear First-Order Differential Equations .............................................................. 200 3.1.4 Nonlinear First-Order Differential Equations ........................................................... 204 3.1.5 Systems of First-Order Differential Equations ....................................................... 205 3.2 Higher-Order Differential Equations ............................................................................... 213 3.2.1 Undetermined Coefficients ....................................................................................... 213 3.2.2 Variation of Parameters .......................................................................................... 222 3.2.3 Cauchy–Euler Equations ........................................................................................ 225 3.2.4 Systems of Linear Differential Equations................................................................. 229 3.3 Special Second-Order Linear ODEs ................................................................................. 233 3.3.1 Bessel's Equation ...................................................................................................... 233 3.3.2 Legendre's Equation ............................................................................................... 239 3.3.3 Chebyshev's Equation............................................................................................. 241 3.3.4 Hermite's Equation ................................................................................................. 244 3.3.5 Laguerre's Equation ................................................................................................ 246 3.4 Boundary Value Problems ................................................................................................. 248 Problems ..................................................................................................................................... 257 Chapter 4: The Laplace Transform ....................................................................................277 4.1 Definition of the Laplace Transform ................................................................................ 277 4.1.1 Laplace Transform of the Unit Step Function .......................................................... 277 4.1.2 Laplace Transform of the Unit Impulse Function .................................................. 278 4.1.3 Laplace Transform of the Ramp Function .............................................................. 280 4.1.4 Laplace Transform of the Exponential Function ...................................................... 281 4.1.5 Laplace Transform of the Complex Exponential Function .................................... 281 4.2 Properties of the Laplace Transform ................................................................................ 281 4.2.1 Linearity ................................................................................................................... 281 4.2.2 Time Differentiation ................................................................................................. 281 4.2.3 Time Integration ....................................................................................................... 282 4.2.4 Time Shifting — Real Translation ......................................................................... 282 4.2.5 Frequency Shifting — Complex Translation .......................................................... 282 4.2.6 Real Convolution ...................................................................................................... 282 4.2.7 Partial Differentiation ............................................................................................... 283 4.2.8 Complex Differentiation ........................................................................................... 283 4.2.9 Initial Value Theorem (IVT) .................................................................................... 284 4.2.10 Final Value Theorem (FVT) .................................................................................... 284 4.3 The Inverse Laplace Transform ........................................................................................ 287 4.4 Using the Laplace Transform ............................................................................................ 289 4.5 Transfer Function of a Continuous-Time System ........................................................... 295 Problems ..................................................................................................................................... 300 Contents ix Chapter 5: The Z-transform .................................................................................................... . 309 5.1 Definition of the Z-transform ............................................................................................ 309 5.2 Properties of the Z-transform ........................................................................................... 314 5.2.1 Linearity ................................................................................................................... 314 5.2.2 Time Shifting — Real Translation ......................................................................... 314 5.2.3 Frequency Shifting — Complex Translation .......................................................... 315 5.2.4 Time Reversal........................................................................................................... 315 5.2.5 Real Convolution ...................................................................................................... 316 5.2.6 Complex Convolution .............................................................................................. 316 5.2.7 Complex Differentiation ........................................................................................... 317 5.2.8 Partial Differentiation ............................................................................................... 317 5.2.9 Initial Value Theorem .............................................................................................. 317 5.2.10 Final Value Theorem ................................................................................................ 318 5.3 The Inverse Z-transform .................................................................................................... 318 5.4 Using the Z-transform ........................................................................................................ 322 5.5 Transfer Function of a Discrete-Time System ................................................................. 324 5.6 Differential Equation and Difference Equation ............................................................... 327 Problems ..................................................................................................................................... 329 Chapter 6: Fourier Series and Fourier Transform ............................................................337 6.1 Continuous-Time Fourier Series (CTFS) ......................................................................... 337 6.1.1 Definition and Convergence Conditions .................................................................. 337 6.1.2 Examples of CTFS ................................................................................................... 340 6.2 Continuous-Time Fourier Transform (CTFT) ................................................................ 348 6.2.1 Definition and Convergence Conditions .................................................................. 348 6.2.2 (Generalized) CTFT of Periodic Signals .................................................................. 351 6.2.3 Examples of CTFT ................................................................................................... 352 6.2.4 Properties of CTFT ................................................................................................... 357 6.3 Discrete-Time Fourier Transform (DTFT) ...................................................................... 363 6.3.1 Definition and Convergence Conditions .................................................................. 363 6.3.2 Examples of DTFT ................................................................................................... 364 6.3.3 DTFT of Periodic Sequences .................................................................................... 367 6.3.4 Properties of DTFT .................................................................................................. 369 6.4 Discrete Fourier Transform (DFT) ................................................................................... 373 6.5 Fast Fourier Transform (FFT) .......................................................................................... 377 6.5.1 Decimation-in-Time (DIT) FFT ............................................................................... 377 6.5.2 Decimation-in-Frequency (DIF) FFT ....................................................................... 380 6.5.3 Computation of IDFT Using FFT Algorithm ........................................................... 382 6.5.4 Interpretation of DFT Results ................................................................................... 382 6.6 Fourier–Bessel/Legendre/Chebyshev/Cosine/Sine Series ................................................ 385 6.6.1 Fourier–Bessel Series ............................................................................................... 385 6.6.2 Fourier–Legendre Series .......................................................................................... 388 6.6.3 Fourier–Chebyshev Series ........................................................................................ 389 6.6.4 Fourier–Cosine/Sine Series ...................................................................................... 391 Problems ..................................................................................................................................... 395

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.