ebook img

En variabel bit lengde 9-bit 50MS/S SAR ADC - DiVA PDF

126 Pages·2012·2.53 MB·Norwegian
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview En variabel bit lengde 9-bit 50MS/S SAR ADC - DiVA

En variabel bit lengde 9-bit 50MS/S SAR ADC Jørgen Moe Sandvik Master i elektronikk Innlevert: Desember 2012 Hovedveileder: Trond Ytterdal, IET Norges teknisk-naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Master Thesis Circuit and system design A Variable Bit Length 9-bit 50MS/s SAR ADC by Jørgen Moe Sandvik Supervisor Trond Ytterdal Report delivered: 27.12.2012 Faculty of information technology, mathematics and electrical engineering Norwegian university of science and technology A Variable Bit Length 9-Bit 50MS/s SAR ADC i Abstract A 9-bit 50MS/s SAR ADC with a simulated power consumption of 24.5 µW was designed for this thesis. Specifications were made for application with in-probe electronic as part of an ultrasound system. A novel switching-scheme-employingvariablebitlengthencod- ing – was introduced in order to simplify successive ap- proximation. Pre-layout results reported a FoM of just 1.37 fJ/conversion step, which is favorable to all pub- lished designs to date. Recenttechnologyadvancementshasseentheultrasound fieldexpandingintohandheldmarkets[33]. Morepower efficient solutions, in addition to existing enhanced res- olution 3-D technology both place strict requirements for analog/mixed-signal design. Composite electronics within the probe casing - allowing close-to-source signal processing - is believed to be the future of ultrasound devices. ADC designs suitable for in-probe technology requireultralowpowerandnoisecharacteristicstowards supporting multiple channels on a single SoC. Excellent performance of recent SAR ADCs make them a viable alternative for in-probe technology [2, 7, 12, 4]. WorkinthisthesisshowtheflexibilityoftheSARalgo- rithm. The relatively simple implementation/decoding oftheVBLapproach,complimentedbytheaccuracyde- pendency of the level detection range makes the ADC reconfigurable by digital signal processing. Recentpublisheddesignhasreportedrelativelylowpower consumption for the comparator [15, 7]. A motivation forthethesiswastoseewhethermultipleoperatedcom- parators could reduce power in remaining circuitry. Im- ii plementation of a level-detector - supporting the VBL switching-scheme - has lead to improvements in: Power efficiency, speed and metastability-induced errors. The device consists of two comparators operated in parallel, with a relative DC-offset generated by difference in the capacitiveload. Decisionpointsofthecomparatorsshift with DC-offset, and are atoned for a range desired by the modified SAR algorithm. Anextensiveliterarysearchofrecentmethodologiesand resultswasconducted,andasummerypresentingstate- of-the-art designs is included with the work. An ap- proach using no external references where chosen as a basisfor theDAC design. Emphasizewasmade oncon- stantcommon-modevoltagesuitablyforcomparatorde- sign eliminating pre-amplifiers or buffers. Digitallogicconsistingofserialconnectedbitslicesusing a novel differential approach is proposed. Level detec- tor outputs are connected to the digital logic switching only a portion of transistors in the bitslice during con- version. Trade-offbetweenswitchingactivityandcircuit area proves effective, with only 12.5% of overall power consumed in the digital part. Powersimulationsreportedthelevel-detectorasthedom- inant source of consumption, thereby being subject to furtheroptimizationwithregardstopower. Nonetheless aproof-of-concept8-bitADCimplementation-operated with the novel switching-scheme - produced 8.96 ENOB while dissipating less power. , iii Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.2 Ultrasound Application . . . . . . . . . . . . . . 3 1.3 Major Contributions . . . . . . . . . . . . . . . . 4 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . 5 2 Theory 7 2.1 General . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 Power Consumption . . . . . . . . . . . . 7 2.1.2 Noise . . . . . . . . . . . . . . . . . . . . 15 2.1.3 Signal-to-Noise/Distortion Ratio . . . . . 22 2.1.4 Scalar Quantization . . . . . . . . . . . . 24 2.2 Performance of Data Converters . . . . . . . . . 26 2.2.1 Quatnization Noise . . . . . . . . . . . . . 26 2.2.2 Effective Number of Bits. . . . . . . . . . 29 2.2.3 Bandwidth . . . . . . . . . . . . . . . . . 30 2.2.4 Non-Linearity . . . . . . . . . . . . . . . . 32 2.2.5 Figure-of-Merit . . . . . . . . . . . . . . . 32 2.3 Comparator . . . . . . . . . . . . . . . . . . . . . 33 2.4 Digital Logic . . . . . . . . . . . . . . . . . . . . 37 2.5 Sampling Switch . . . . . . . . . . . . . . . . . . 38 2.6 Digital-to-Analog Converter . . . . . . . . . . . . 40 2.7 DAC Noise Modeling . . . . . . . . . . . . . . . . 40 2.8 Capacitor Mismatch Error . . . . . . . . . . . . . 44 iv 3 Previous State-of-the-Art 45 3.1 Top-Plate Sampling . . . . . . . . . . . . . . . . 46 3.2 Differential input . . . . . . . . . . . . . . . . . . 48 3.3 Monotonic Decreasing Switching Scheme . . . . . 50 3.4 Merged Capacitor Switching . . . . . . . . . . . . 50 4 Proposed 51 4.1 Stable Common-mode Switching Scheme . . . . . 51 4.2 Variable Bit Length . . . . . . . . . . . . . . . . 58 4.3 Level Detector . . . . . . . . . . . . . . . . . . . 68 4.4 Decoding the VBL Code . . . . . . . . . . . . . . 69 4.5 Digital Logic . . . . . . . . . . . . . . . . . . . . 71 5 Design 76 5.1 Digital Logic . . . . . . . . . . . . . . . . . . . . 76 5.2 Digital-to-Analog Converter . . . . . . . . . . . . 77 5.3 Bootstrap switch . . . . . . . . . . . . . . . . . . 79 5.4 Level Detector . . . . . . . . . . . . . . . . . . . 83 6 Results 87 6.1 Specifications . . . . . . . . . . . . . . . . . . . . 87 6.2 Overview of Main Simulated Results . . . . . . . 87 6.3 Power . . . . . . . . . . . . . . . . . . . . . . . . 87 6.4 Noise . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.5 Non-Linearity . . . . . . . . . . . . . . . . . . . . 88 6.6 Deadzone . . . . . . . . . . . . . . . . . . . . . . 91 7 Discussion 91 7.1 General Comments to Simulated Results . . . . . 92 v 7.2 Impact of Design Choices . . . . . . . . . . . . . 93 7.3 Reconfigurability of the Design . . . . . . . . . . 95 7.4 Metastability in the Level-Detector . . . . . . . . 96 7.5 PossibleImplementationwithCommunicationSys- tems . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.6 Comparison to Previous State-of-the-Art Designs 103 8 Conclusion 105 List of Figures 1 A typical fron-end for an ultrasound system . . . 3 2 Technology Roadmap for number of transistors vs. gate length . . . . . . . . . . . . . . . . . . . 8 3 Transistor-level inverter with parasitic load . . . 10 4 Resistor Noise Models . . . . . . . . . . . . . . . 17 5 Noise model for a capacitor in parallel with a re- sistor . . . . . . . . . . . . . . . . . . . . . . . . . 18 6 Model of a SC circuit. . . . . . . . . . . . . . . . 20 7 Noise model for a MOSFET . . . . . . . . . . . . 23 8 Embedded Quantization . . . . . . . . . . . . . . 25 9 Quantizationlevelsasafunctionoftheinputsignal 27 10 Quantization error for a 4-bit data converter . . 29 11 Effective Resolution Bandwidth . . . . . . . . . . 31 12 Track-and-latch stage . . . . . . . . . . . . . . . 34 13 Block diagram of SAR ADC digital logic . . . . . 37 14 On-resistance for MOS-transistors . . . . . . . . 38 15 A unipolar capacitive charge-redistribution DAC 41 vi 16 Equivalencapacitanceseenfromthesamplinswitch 42 17 A single-ended charge-redistribution DAC with inverters . . . . . . . . . . . . . . . . . . . . . . . 47 18 An equivalent circuit for a capacitor with para- sitic capacitances . . . . . . . . . . . . . . . . . . 47 19 Differential Charge-Redistrubution DAC . . . . . 49 20 Split potential capacitors . . . . . . . . . . . . . 52 21 Switchin Schemes . . . . . . . . . . . . . . . . . . 54 22 Differential split potential capacitor array . . . . 56 23 Differential split potential capacitor array with asymmetrical LSB . . . . . . . . . . . . . . . . . 58 24 Switchin Schemes . . . . . . . . . . . . . . . . . . 59 25 Decision levels in a segment of the quantization error for a 4-bit ADC . . . . . . . . . . . . . . . 62 26 Level detection in the VBL switching scheme . . 65 27 Differential split potential capacitor array with variable bit length code . . . . . . . . . . . . . . 67 28 Syntax for decoding VBL output . . . . . . . . . 70 29 Bitslice schematic . . . . . . . . . . . . . . . . . . 72 30 Select waveforms of the bitslice . . . . . . . . . . 73 31 Block diagram for the Digital Logic. . . . . . . . 76 32 Digital-to-Analog Converter . . . . . . . . . . . . 78 33 Bootstrap switch . . . . . . . . . . . . . . . . . . 80 34 Bootstrap waveform . . . . . . . . . . . . . . . . 81 35 Implementation of a level detector . . . . . . . . 84 36 Non-linearity analysis . . . . . . . . . . . . . . . 90 37 Deadzone Sweep . . . . . . . . . . . . . . . . . . 92 38 Metastability in the level detector . . . . . . . . 97 39 Variable length code . . . . . . . . . . . . . . . . 99 vii

Description:
En variabel bit lengde 9-bit 50MS/S SAR. ADC. Jшrgen Moe Sandvik. Master i elektronikk. Hovedveileder: Trond Ytterdal, IET. Institutt for elektronikk og
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.