ebook img

Elementary Particle Theory. Volume 2, Quantum Electrodynamics PDF

217 Pages·2019·2.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Elementary Particle Theory. Volume 2, Quantum Electrodynamics

EugeneStefanovich ElementaryParticleTheory De Gruyter Studies in Mathematical Physics | Edited by Michael Efroimsky, Bethesda, Maryland, USA Leonard Gamberg, Reading, Pennsylvania, USA Dmitry Gitman,São Paulo, Brazil Alexander Lazarian, Madison, Wisconsin, USA BorisSmirnov, Moscow, Russia Volume 46 Eugene Stefanovich Elementary Particle Theory | Volume 2: Quantum Electrodynamics MathematicsSubjectClassification2010 Primary:81-02,81V10,81T15;Secondary:47A40,81T18 Author DrEugeneStefanovich SanJose,California USA [email protected] ISBN978-3-11-049089-3 e-ISBN(PDF)978-3-11-049320-7 e-ISBN(EPUB)978-3-11-049143-2 ISSN2194-3532 LibraryofCongressControlNumber:2018016481 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Contents Listoffigures|IX Listoftables|XI Postulates,statements,theorems|XIII Conventionalnotation|XV Preface|XVII 1 Fockspace|1 1.1 Creationandannihilationoperators|1 1.1.1 Sectorswithfixednumbersofparticles|1 1.1.2 ParticleobservablesinFockspace|3 1.1.3 NoninteractingrepresentationofPoincarégroup|3 1.1.4 Creationandannihilationoperatorsforfermions|4 1.1.5 Anticommutatorsofparticleoperators|6 1.1.6 Creationandannihilationoperatorsforphotons|7 1.1.7 Particlenumberoperators|7 1.1.8 Continuousspectrumofmomentum|8 1.1.9 Normalordering|9 1.1.10 Noninteractingenergyandmomentum|11 1.1.11 Noninteractingangularmomentumandboost|12 1.1.12 Poincarétransformationsofparticleoperators|13 1.2 Interactionpotentials|15 1.2.1 Conservationlaws|15 1.2.2 Generalformofinteractionoperators|17 1.2.3 Fivetypesofregularpotentials|20 1.2.4 Productsandcommutatorsofregularpotentials|23 1.2.5 Moreaboutt-integrals|25 1.2.6 Solutionofonecommutatorequation|27 1.2.7 Two-particlepotentials|28 1.2.8 Momentum-dependentpotentials|31 2 ScatteringinFockspace|33 2.1 Toymodeltheory|33 2.1.1 FockspaceandHamiltonian|33 2.1.2 S-operatorinsecondorder|35 2.1.3 Drawingdiagramsintoymodel|36 VI | Contents 2.1.4 Readingdiagramsintoymodel|39 2.1.5 Scatteringinsecondorder|40 2.2 Renormalizationintoymodel|41 2.2.1 Renormalizationofelectronself-scatteringinsecondorder|41 2.2.2 Renormalizationofelectronself-scatteringinfourthorder|43 2.3 Diagramsingeneraltheory|46 2.3.1 Productsofdiagrams|46 2.3.2 Connectedanddisconnecteddiagrams|47 2.3.3 Divergenceofloopintegrals|50 2.4 Clusterseparability|52 2.4.1 Clusterseparabilityofinteraction|52 2.4.2 ClusterseparabilityofS-operator|54 3 Quantumelectrodynamics|57 3.1 InteractioninQED|57 3.1.1 Whydoweneedquantumfields?|58 3.1.2 Simplequantumfieldtheories|58 3.1.3 InteractionoperatorsinQED|60 3.2 S-operatorinQED|62 3.2.1 S-operatorinsecondorder|62 3.2.2 CovariantformofS-operator|66 3.2.3 Feynmangauge|68 3.2.4 Feynmandiagrams|70 3.2.5 Comptonscattering|72 3.2.6 Virtualparticles?|73 4 Renormalization|75 4.1 Tworenormalizationconditions|75 4.1.1 Noself-scatteringcondition|75 4.1.2 Chargerenormalization|78 4.1.3 Renormalizationbycounterterms|78 4.1.4 Diagramsofelectron–protonscattering|79 4.1.5 Regularization|80 4.2 Counterterms|81 4.2.1 Electron’sself-scattering|81 4.2.2 Electronself-scatteringcounterterm|83 4.2.3 Fittingcoefficient(δm)2|84 4.2.4 Fittingcoefficient(Z2−1)2|85 4.2.5 Photon’sself-scattering|86 4.2.6 Photonself-energycounterterm|87 4.2.7 Applyingchargerenormalizationcondition|89 4.2.8 Vertexrenormalization|90 Contents | VII 4.3 RenormalizedS-matrix|93 4.3.1 “Vacuumpolarization”diagrams|93 4.3.2 Vertexdiagram|93 4.3.3 Ladderdiagram|95 4.3.4 Crossladderdiagram|98 4.3.5 Renormalizability|101 A Usefulintegrals|103 B Quantumfieldsoffermions|107 B.1 Paulimatrices|107 B.2 Diracgammamatrices|108 B.3 DiracrepresentationofLorentzgroup|109 B.4 ConstructionofDiracfield|112 B.5 Propertiesoffunctionsuandv|114 B.6 Explicitformulasforuandv|115 B.7 Usefulnotation|118 B.8 Poincarétransformationsoffields|119 B.9 Approximation(v/c)2|120 B.10 Anticommutationrelations|122 B.11 Diracequation|123 B.12 Fermionpropagator|125 C Quantumfieldofphotons|129 C.1 Constructionofphotonquantumfield|129 C.2 Propertiesoffunctioneμ(p,τ)|130 C.3 Usefulcommutator|131 C.4 Commutatorofphotonfields|133 C.5 Photonpropagator|133 C.6 Poincarétransformationsofphotonfield|135 D QEDinteractionintermsofparticleoperators|139 D.1 Currentdensity|139 D.2 First-orderinteractioninQED|142 D.3 Second-orderinteractioninQED|142 E RelativisticinvarianceofQFT|155 E.1 RelativisticinvarianceofsimpleQFT|155 E.2 RelativisticinvarianceofQED|156 F LoopintegralsinQED|163 F.1 Schwinger–Feynmanintegrationtrick|163 VIII | Contents F.2 Somebasicfour-dimensionalintegrals|164 F.3 Electronself-energyintegral|167 F.4 Vertexintegral|170 F.4.1 CalculationofM|172 F.4.2 CalculationofMσ |173 F.4.3 CalculationofMστ |174 F.4.4 Completeintegral|175 F.5 Integralforladderdiagram|178 F.5.1 CalculationofLI|179 F.5.2 CalculationofLII|181 F.5.3 CalculationofLIII|182 F.5.4 Completeintegral|184 G Scatteringmatrixin(v/c)2approximation |185 G.1 Secondperturbationorder|185 G.2 Vertexcontributioninfourthorder|187 H Checksofphysicaldimensions|191 Bibliography|193 Index|195 List of figures Figure1.1 Operatorsin“indexspace”(page20) Figure2.1 DiagramsforoperatorsV1andV1(t)(page37) Figure2.2 Normalorderingoftheproductoftwodiagrams(page38) Figure2.3 RenormdiagramsinVcVcVcVc(page44) Figure2.4 DiagramofthecountertermQ (page44) 2 Figure2.5 RenormdiagramsinVcVc+VcVcVc(page45) Figure2.6 TotheproofofLemma2.3(page49) Figure2.7 Genericdiagraminahypotheticaltheory(page49) − + Figure3.1 Second-orderdiagramfore +p scattering(page72) − Figure3.2 e +γscatteringdiagrams(page73) − + Figure4.1 e +p scatteringdiagramsuptothefourthorder(page80) Figure4.2 Electronself-scatteringdiagrams(page81) Figure4.3 Photonself-scatteringdiagrams(page86) Figure4.4 “Vacuumpolarization”diagrams(page89) Figure4.5 Vertexdiagrams(page91) Figure4.6 Ladderdiagram(page95) Figure4.7 Cross-ladderdiagram(page98) FigureA.1 Tothecalculationofintegral(A.10)(page104) FigureF.1 Wickrotationintheintegral(F.6)(page164) FigureF.2 Integrationareain(F.45)(page179) https://doi.org/10.1515/9783110493207-201

Description:
In a successful theory of elementary particles, at least three important conditions must be fulfilled: (1) relativistic invariance in the instant form of dynamics; (2) cluster separability of the interaction; (3) description of processes involving creation and destruction of particles. In the first
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.