Electric Propulsion in Passenger Jet Airplanes Requirements to realize all-electric propulsion Peter Bjarnholt Energy Technology EGI-2016-08 Master of Science Thesis, MJ233X Division of Kraft och Värme, EKG KTH School of Industrial Engineering and SE-100 44 STOCKHOLM Management Master of Science Thesis EGI 2016: Division of Kraft och Värme, EKV Electric Propulsion in Passenger Jet Airplanes Requirements to realize all-electric propulsion Peter Bjarnholt Approved: Examiner: Supervisor: Paul Petrie-Repar Jens Fridh Commissioner: Contact person: Abstract Passenger jet airplane propulsion systems are today dominated by turbo-jet engines that burn fossil fuels. The unsustainability of this is a concern both from an economic and environmental point of view. This research identifies the limiting factors in achieving to build a compelling battery-electric passenger jet airplane, and predict the range that can be achieved today and in the foreseeable future. A literature study was performed to find the necessary performance data for all technical components. To analyze the performance of an electric propulsion system, the Boeing 787-8 was chosen as a reference and comparison. Piano-X, a program used for simulating the performance of different aircrafts under different conditions was then used to get data for fuel consumption and performance data for the airplane. The gravimetric energy density of the batteries was found to be the greatest limiting factor. Electric motors and power electronics were found to have about the same performance as a modern turbo- fan engine in terms of gravimetric power density. The results also showed that with today’s batteries, that present an energy density of 250 Wh/kg, the range is limited to about 600 km, assuming a 40% cell-mass-fraction and 25% improvement in flight efficiency. In conclusion, the challenge in creating a compelling all-electric passenger jet airplane is a big one, but not impossible. Assuming battery technology continues to improve at current rate, and design optimizations are done to the airplanes, a range over 1400 km seems to be possible within the next decade. Master of Science Thesis EGI 2016: Enhet för Kraft och Värme, EKV Electric Propulsion in Passenger Jet Airplanes Requirements to realize all-electric propulsion Peter Bjarnholt Godkänd: Examinator: Handledare: Paul Petrie-Repar Jens Fridh Commissioner: Kontakt person: Sammanfatting Passagerarflygplans framdrivningssystem är idag dominerat av turbo-jetmotorer som använder sig av fossila bränslen. Denna icke hållbara lösning är ett bekymmer både ur en ekonomisk och en miljömässig synvinkel. Denna forskningsstudie identifiera de begränsande faktorerna för att uppnå tillverkning och användningen av elektriska passagerarflygplan med hjälp av batteri, och förutsäga omfånget som går att uppnås i dag och inom överskådlig framtid. En litteraturstudie genomfördes för att hitta nödvändiga prestanda-data för alla tekniska komponenter. För att analysera resultatet av ett elektriskt framdrivningssystem, var Boeing 787-8 valts som en referens och en jämförelse. Piano-X är ett program som används för att simulera prestanda hos olika flygplan under olika förhållanden. Detta program användes för att få uppgifter om bränsleförbrukning och för att få fram prestanda-data för flygplanet. Den gravimetriska energi-densiteten hos batterierna upptäcktes att vara den störst begränsande faktorn. Elektriska motorer och kraftelektronik befanns sig ha ungefär samma prestanda som en modern turbo-fläktmotor, i befattning av gravimetrisk effekttäthet. Resultaten visade att med dagens batterier, som har en energitäthet av 250 Wh/kg, är räckvidden begränsad till ca 600 km, med antagande av en 40 % cellmassfraktion och 25 % förminskning av total energiåtgång under flygning. Sammanfattningsvis är utmaningen i att skapa en övertygande hel-elektrisk passagerarflygplan stor, men inte omöjligt. Förutsatt att batteriteknologin fortsätter att förbättras i nuvarande takt, och designoptimeringar görs för flygplanen, är en räckvidd över 1400 km möjligt inom de närmaste tio åren. Table of content 1 Introduction ..................................................................................................................................... 1 1.1 Background .............................................................................................................................. 1 1.2 Broad Goals ............................................................................................................................. 1 1.3 Approach ................................................................................................................................. 2 2 Literature study ............................................................................................................................... 3 2.1 Passenger jet airplane design .................................................................................................. 3 2.1.1 Weight Distribution ......................................................................................................... 3 2.1.2 Performance .................................................................................................................... 4 2.2 Developments in electric propulsion for airplanes ................................................................. 4 2.3 Turbofan engines ..................................................................................................................... 6 2.4 Electric ducted fans ................................................................................................................. 7 2.4.1 Electric motors................................................................................................................. 7 2.4.2 Power electronics ............................................................................................................ 9 2.4.3 Scaling effects .................................................................................................................. 9 2.5 Energy storage ....................................................................................................................... 10 2.5.1 State of the art lithium ion batteries ............................................................................. 10 2.5.2 Future trends of batteries ............................................................................................. 11 4 Method .......................................................................................................................................... 13 5 Implementation ............................................................................................................................. 14 5.1 Aircraft flight simulation modelling (Piano-X) ....................................................................... 14 5.2 Assumptions, inputs and variables ........................................................................................ 15 7 Results ........................................................................................................................................... 16 8 Conclusions & Discussion .............................................................................................................. 18 8.1 Conclusions ............................................................................................................................ 18 8.2 Discussion .............................................................................................................................. 18 10 Recommendations and Future work ......................................................................................... 19 10.1 Recommendations................................................................................................................. 19 10.2 Future work ........................................................................................................................... 19 12 References ................................................................................................................................. 20 Appendix A - Calculation of thermal efficiency of Trent 1000 ................................................................ 1 Appendix B - Calculation of peak power output of lithium ion cell ........................................................ 2 1 Introduction The introduction describes the background, broad goals and the overall approach taken in this work. 1.1 Background Transportation systems on our planet have been dependent on fossil fuels for over a hundred years. This energy resource has been so plentiful, cheap and energy-dense that for a long time the benefits of this fuel have outweighed the drawbacks (Environmental and Energy Study institute, 2016). Over the last decade however, the negative impacts of fossil fuels have become more apparent because of increased cost of extraction, pollution and the threat of global warming (Environmental and Energy Study institute, 2016). This has spurred the development of new and improved technologies within energy storage, energy transformation and alternative propulsion technologies. Electric propulsion has for many years been held back by the available energy storage technology. Batteries have had too low energy density, power density, and too high cost. The improvement and cost reduction in battery technology over the last few decades has made it possible for road transport vehicles to start a transition to electric propulsion systems. An airplane however has higher requirements than cars in terms of energy density and power density. Electrifying air transport is therefore a much bigger challenge. Electric motors and especially power electronics have also improved over the last few decades, both in terms of power density and efficiencies. Because airplanes are highly sensitive to increases in weight, these drivetrain components could in spite of this still be a limiting factor for the performance of a hypothetical electric passenger jet airplane. 1.2 Broad Goals The goal of this master thesis was to evaluate the feasibility for passenger jet airplanes to use battery-electric jet propulsion with current technology, as well as in the foreseeable future. The following questions were answered: Is current technology in electric propulsion good enough to build an electric passenger jet airplane? If not, what components specifically, need improvements to make it feasible? What range can be achieved with current technology? What range can be achieved in the foreseeable future with expected technology improvements? 1 1.3 Approach To be able to answer the questions stated, a literature study on some key areas was needed. Current performance metrics and future trends in the following were gathered. Turbofan engines Electric motors Power electronics Batteries Electric Ducted Fans (EDFs) Passenger Jet Airplane design Electric propulsion airplanes After these performance metrics were gathered, the limiting factors in electric propulsion was known well enough to do a comparative study between an electric propulsion system and a conventional turbofan propulsion system. A precise method for doing a comparative study was then developed and described in chapter 3. 2 2 Literature study A literary study was made to get a deeper understanding of passenger jet airplane design, developments in electric propulsion for airplanes, electric ducted fans, and energy storage technology. 2.1 Passenger jet airplane design A modern passenger jet airplane was chosen as a reference. The Boeing 787-8 Dreamliner was found to be the best fit for this study because of the modern construction and the availability of needed performance specifications as well as the data files for simulating flights in Piano-X. 2.1.1 Weight Distribution Weight data on the Boeing 787-8 was gathered so that an understanding of how much weight can be reserved for energy storage could be estimated. The main thing to notice about the weight distribution, Figure 1, is that the weight of the airplane decreases as the airplane burns fuel throughout the flight. 250000 200000 85858 30563 150000 ] g Fuel weight k[ 21280 21280 s s Standard Payload weight a M 100000 Operating empty weight 120792 120792 50000 0 Maximum Take-off weight Maximum Landing weight Figure 1 - Weight distribution in a Boeing 787-8 The 787-8 has a maximum take-off weight of 228 tons, and a maximum landing weight of 172 tons. The longer version that has the same wing area, the 787-9, has a maximum take-off weight (MTOW) and maximum landing weight (MLW) of 254 and 193 tons respectively, (Flugzeuginfo, 2016). To maximize the energy storage capacity of the airplane, the total weight will have to be maximized as well. In a battery-electric airplane that is the same as the take-off weight and landing weight since no fuel is leaving the plane in the flight. Since the 787-9 can handle 193 tons and has the same wing 3 area, assuming that can be pushed to 200 tons on the 787-8 with some minor optimizations is not an unreasonable assumption. 2.1.2 Performance Range performance data was gathered on the Boeing 787-8, Figure 2, showing how the maximum range depends on the payload weight. A standard payload weight is roughly 21 tons, giving a range of 13600 km. Figure 2 - Range vs payload weight 2.2 Developments in electric propulsion for airplanes Some research was devoted to finding existing designs for electric passenger jet airplanes. In 2011, EADS presented an all-electric transport concept platform called the Voltair, Figure 3. In this research this was found to be the only fully electric design presented by a large company. The design of the plane has been optimized for electric propulsion, making it more aerodynamic and increasing the propulsive efficiency by placing the electric fan at the tail of the aircraft, Figure 5, using contra- rotating fans, as well as designing the wing to have a high share of laminar flow, (Voltair, 2011). 4
Description: