ebook img

Efficient simulations of water with ab initio accuracy PDF

192 Pages·2015·12.36 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Efficient simulations of water with ab initio accuracy

RUHR-UNIVERSITA¨T BOCHUM FAKULTA¨T FU¨R CHEMIE UND BIOCHEMIE LEHRSTUHL FU¨R THEORETISCHE CHEMIE Efficient Simulations of Water with Ab Initio Accuracy: Development of High-Dimensional Neural Network Potentials for Water Clusters and Bulk Water HˆΨ=EΨ y 1 G 1 y2 E G 2 y 3 Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften Tobias Morawietz Die vorliegende Dissertation wurde in der Zeit von Januar 2011 bis Mai 2015 am Lehrstuhl fu¨r Theoretische Chemie an der Fakulta¨t fu¨r Chemie und Biochemie der Ruhr-Universita¨tBochumangefertigt. LeiterderArbeit: PDDr. Jo¨rgBehler 1. Referent: PDDr. Jo¨rgBehler 2. Referent: Prof. Dr. DominikMarx Dekan: Prof. Dr. NilsMetzler-Nolte Publications Partoftheworkpresentedinthisthesisisbasedonthefollowingpublications: • T.MorawietzandJ.Behler,ADensity-FunctionalTheoryBasedNeuralNetwork PotentialforWaterClustersIncludingvanderWaalsCorrections,J.Phys. Chem. A117,7356(2013). • T. Morawietz and J. Behler, A Full-Dimensional Neural Network Potential- Energy Surface for Water Clusters up to the Hexamer, Z. Phys. Chem. 227, 1559(2013). • T. Morawietz, V. Sharma, and J. Behler, A Neural Network Potential-Energy SurfacefortheWaterDimerBasedonEnvironment-DependentAtomicEnergies andCharges,J.Chem. Phys. 136,064103(2012). Furthermore,theauthorcontributedtothefollowingpublications: • S.KondatiNatarajan,T.Morawietz,andJ.Behler,RepresentingthePotential- Energy Surface of Protonated Water Clusters by High-Dimensional Neural NetworkPotentials,Phys. Chem. Chem. Phys. 17,8356(2015). • N. Artrith, T. Morawietz, and J. Behler, High-Dimensional Neural-Network Potentialsfor MulticomponentSystems: Applicationsto ZincOxide, Phys. Rev. B83,153101(2011). For NN ... vii Contents I. Introduction and State of the Art 1 1. Introduction 3 1.1. OutlineoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. State of the Art in Simulating Water 5 2.1. EmpiricalWaterModels . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2. AbInitioSimulationsofWater . . . . . . . . . . . . . . . . . . . . . 8 2.3. PotentialsBasedonAbInitioCalculations . . . . . . . . . . . . . . . 10 II. Theoretical Background 13 3. Neural Network Potentials 15 3.1. Feed-ForwardNeuralNetworks . . . . . . . . . . . . . . . . . . . . 15 3.2. High-DimensionalNeuralNetworks . . . . . . . . . . . . . . . . . . 24 3.3. SystematicConstructionoftheReferenceData . . . . . . . . . . . . 31 4. Density-Functional Theory 34 4.1. BasicsofDensity-FunctionalTheory . . . . . . . . . . . . . . . . . . 34 4.2. vanderWaalsCorrections . . . . . . . . . . . . . . . . . . . . . . . 43 4.3. TheFHI-aimscode . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5. Computational Details 50 5.1. NeuralNetworkPotentials . . . . . . . . . . . . . . . . . . . . . . . 50 5.2. ReferenceCalculations . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3. MolecularDynamicsSimulations . . . . . . . . . . . . . . . . . . . . 51 viii III. Neural Network Potentials for Water Clusters 53 6. The Water Dimer 55 6.1. ExtendingtheReferenceDataSet . . . . . . . . . . . . . . . . . . . 55 6.2. IncorporatingLong-RangeElectrostaticInteractions . . . . . . . . . . 57 6.3. EvaluationofthePotential . . . . . . . . . . . . . . . . . . . . . . . 61 7. Larger Water Clusters 66 7.1. GeneratingtheReferenceDataSet . . . . . . . . . . . . . . . . . . . 66 7.2. LocatingMinimumEnergyConfigurations . . . . . . . . . . . . . . . 73 7.3. ImpactofvanderWaalsInteractions . . . . . . . . . . . . . . . . . . 79 7.4. TransferabilityoftheClusterPotentials . . . . . . . . . . . . . . . . 84 IV. Neural Network Potentials for Bulk Water 89 8. Construction of the Bulk Water Potentials 91 8.1. ReferenceConfigurations . . . . . . . . . . . . . . . . . . . . . . . . 91 8.2. AccuracyoftheReferenceDataSets . . . . . . . . . . . . . . . . . . 96 9. Properties of Crystalline and Liquid Water 98 9.1. PropertiesofCrystallineWater . . . . . . . . . . . . . . . . . . . . . 98 9.2. StructureofLiquidWater . . . . . . . . . . . . . . . . . . . . . . . . 102 9.3. DielectricPropertiesofLiquidWater . . . . . . . . . . . . . . . . . . 106 9.4. DynamicsofLiquidWater . . . . . . . . . . . . . . . . . . . . . . . 108 10.Large-Scale Simulations: The Density Anomalies of Water 111 10.1. DensityIsobars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.2. WaterNeighborDistribution . . . . . . . . . . . . . . . . . . . . . . 114 10.3. HydrogenBondStrength . . . . . . . . . . . . . . . . . . . . . . . . 116 V. Summary and Perspectives 121 11.Summary 123 12.Perspectives 126 12.1. NuclearQuantumEffects . . . . . . . . . . . . . . . . . . . . . . . . 126 12.2. ProtonTransferinLiquidWater . . . . . . . . . . . . . . . . . . . . 127 ix Appendices 129 A. Neural Network Settings 131 A.1. NeuralNetworkArchitecture . . . . . . . . . . . . . . . . . . . . . . 131 A.2. SymmetryFunctionParameters . . . . . . . . . . . . . . . . . . . . . 131 B. Water Dimer Vibrational Frequencies 138 C. Mininum Energy Configurations for Water Clusters 141 C.1. (H O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 2 n=2−6 C.2. (H O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 2 n=2−10 D. Equilibrium Volumes and Energies of Ice Polymorphs 145 Acknowledgements 149 Bibliography 151 x

Description:
[57] M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele. Ab Initio .. [138] L. M. Raff, R. Komanduri, M. Hagan, and S. T. S. Bukkapatnam.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.