ebook img

Effective Field Theory for Long Strings PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Effective Field Theory for Long Strings

Effective Field Theory for Long Strings 3 1 0 2 n M. Baker a DepartmentofPhysics,UniversityofWashington,Seattle J Box351560,SeattleWA98195,USA 8 1 E-mail:[email protected] ] h InpreviousworkweusedmagneticSU(N)gaugetheorywithadjointrepresentationHiggsscalars p to describe the long distance quark-antiquark interaction in pure Yang-Mills theory, and later - p to obtain an effectivestring theory. The empiricallydeterminedparametersof the non-Abelian e effectivetheoryyieldedZ fluxtubesresemblingthoseoftheAbelianHiggsmodelwithLandau- h N [ Ginzburg parameter equal to 1/√2, corresponding to a superconductoron the border between typeIandtypeII.However,thephysicalsignificanceofthedifferencesbetweentheAbelianand 1 v the ZN vortices was not elucidated and no principle was found to fix the value of the ’Landau- 7 Ginzburgparameter’k ofthenon-AbeliantheorydeterminingthestructureoftheZ vortices. N 6 4 Here we reexaminethis pointof view. We propose a consistency conditionon ZN vortices un- 4 derlying a confining string. This fixes the value of k . The transverse distribution of pressure . 1 p(r)intheresultingZ fluxtubesprovidesaphysicalpictureofthesevorticeswhichdifferses- N 0 sentially from that of the vortices of the Abelian Higgs model. We speculate that this general 3 1 picture is valid independentof the details of the effective magnetic gaugetheoryfromwhich it : v wasobtained. LongwavelengthfluctuationsoftheaxisoftheZ vorticesleadfromaneffective N i X fieldtheorytoaneffectivestringtheorywiththeNambu-Gotoaction.Thiseffectivestringtheory r dependsona single parameter,thestringtension s . Incontrast, the effectivefield theoryhasa a secondparameter,theintrinsicwidth1/Mofthefluxtube,andisapplicableatintermediatedis- tancesinarangebetween0.2fmand1fm,wherethecontributionoftheintrinsicwidthincreases thefluxtubewidthoverthatpredictedbyeffectivestringtheory. XthQuarkConfinementandtheHadronSpectrum 8–12October2012 TUMCampusGarching,Munich,Germany (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ EffectiveFieldTheoryforLongStrings 1. Introduction TheprincipalgoalofthistalkistoreexaminemagneticSU(N)gaugetheorywhichwe have used [1] as an effective field theoryof the long distance quark-antiquarkinteraction, andto elucidate thepropertiesofthe Z flux tubesfoundin thetheory, N In Sections 2 to 4 we write downthe Lagrangianofthe effective SU(N)gaugetheory. We obtain a relation, applicable for any configuration of the Higgs fields, between the string tension s and the transverse distribution of pressure p(r) in the resulting Z flux N ¥ tubes. In section 5, using this relation, we impose a constraint on p(r), rp(r)dr =0, 0 which we speculateis a necessaryconditionfor a fluxtubeto behaveasa string. R In sections 6 and 7 we consider SU(3), where we have found explicit classical Z flux 3 tubesolutions,andwecomparethesesolutionstothosefoundintheAbelianHiggsmodel. Weplotthepressuredistributions p(r)intheZ fluxtube,anddescribethephysicalpicture 3 thatemerges. Thepressureispositiveneartheaxisandatlargerdistancesitisnegative. It is natural to associate the boundary between the outside and inside of the string with the pointat whichthe pressure vanishes. In sections 8 and 9 we show that long wavelength fluctuations of the flux tube axis lead from an effective field theory to an effective string theory with a single parameter, s . The contribution of these fluctuations to the flux tube width [2] fixes the value of the short distancecutoff1/L oftheeffectivefieldtheoryatavaluelessthantheintrinsicwidth1/M. Thusthetheorycan resolve distancescales onthe orderof1/M. Finally,weexaminethe impactof string fluctuations onthe domainofapplicabilityofthe effective field theory. 2. Effective FieldTheory The Lagrangian Leff couples magnetic SU(N) gauge potentials, Cm to three adjoint representationscalar fieldsf . Thegaugecouplingconstantis g . i m 1 1 Leff(Cm ,f i)=2tr( Gmn Gmn + (Dm f i)2) V(f i), (2.1) −4 2 − Gmn =¶ m Cn ¶ n Cm igm[Cm ,Cn ], Dm f i=¶ m f i igm[Cm ,f i]. (2.2) − − − Thecomponentsofthe field tensorGmn definecolorelectric andmagneticfields~E and~B. 1 Ek= e Glm,Bk =Gk0. (2.3) klmn 2 TheHiggspotentialV(f )is generatedfrom oneloopgraphsofSU(N)gaugetheory:[1] i V(f )= m 2N (cid:229) 22trf 2+4Nl tr((cid:229) f 2f 2)+ 1(tr((cid:229) f 2))2+ 2 (cid:229) (trf f )2 , (2.4) i 4 i 3 i j N i N i j i ij i ij ! where the parameter m 2 has dimensions of mass squared and l is dimensionless. The SU(N)gaugesymmetry ofL reflects thatoftheoriginalSU(N)Yang-Millstheory. eff In the confining vacuum the magnetic SU(N) /Z gauge symmetry is completely bro- N ken by a Higgs condensate<f >=f =f J, wherethe three matrices J are the gener- i i0 0 i i ators of N-dimensionalirreducible representationof the three-dimensionalrotation group. TheHiggspotentialhasanabsoluteminimumatf =f : f 2= 9m 2 . i i0 0 −8(N2 1)l − 2 EffectiveFieldTheoryforLongStrings 3. Z Electric FluxTubes N Atlargedistancesrfromthefluxtubeaxisf i andCm areagaugetransformationW (q ) of thevacuumf i =f i0,Cm =0, whichwe can chooseto beAbelian; W (q )=exp(iq Y). i f i W −1(q )f i0W (q ), Cm W −1(q )¶ m W (q ). (3.1) → → g m Therequirementthatf besingle valued exp(i2p Y)is an elementofZ . i N → Asr ¥ → 1 k C~ eˆq Y, exp(igm C~ d~l) exp(2p i ), k=1,2,N 1. (3.2) → g ,r · → N − m I Assuming thegaugepotentialC~ =C(r)eˆq Y everywhereimpliesthatthe electric field 1 d(rC(r)) ~E = (cid:209) C~(~x)Y = eˆ Y. (3.3) z − × −r dr Thefiniteness oftheflux tubeenergy f =0on theflux tubeaxis. i → 4. RelationBetween String Tensionand Stress Tensor inSU(N) FluxTubes Usingthe Abelianansatz(3.3)andtheresulting classical static equation (cid:209) ~E = ~j =ig [f ,D~f ] (4.1) m i i × − to evaluate L gives the following general relation between the string tension s , the eff stress tensor component Tqq , and ~E(r=0), the color electric field on the axis of the flux tube: ¥ 2p rTqq (r)dr= 2tr(2p Yeˆ ~E(r=0)) s . (4.2) Z0 r2 − gm · − validforanyconfigurationoftheHiggsfieldsf . Thequantity 2tr(2p Yeˆ ~E(r=0))R=W, i − gm z· the work necessaryto separatea qq¯ pairlying on thez-axis bya distance R. IfTqq >0thegaugerepulsionexceedstheHiggsattractionproducedbythecirculating magnetic currents generated by the Higgs condensate, and (4.2) implies that W > s R. Thatis,whenthereisnetrepulsion,theworkW neededtoseparatetheqq¯pairadistance R inthe fixed finalvortexfield~E(r=0) isgreaterthans R,whichitself is equalto thework donein a field~E thatis beingbuiltupasthe qq¯ pairis separated. If there is compensationbetween the net attractive and repulsive contributions to the pressure p(r)=Tqq /r2 averagedoverthe widthofthe flux tube;thatis, if ¥ 2p rTqq dr= ¥ 2p rp(r)dr=0, (4.3) r2 0 0 Z Z then thestring tension s =W/R,determinedby thefield ~E(r=0) on theflux tubeaxis. 3 EffectiveFieldTheoryforLongStrings 5. Speculation onEffective FieldTheories Describing Long Strings Consider now a flux tube connecting a qq¯ pair located at z = R/2 having energy ± V (R), the heavy quark potential. The force acting on the quarks is determined by the 0 color field at the positions of the quarks and is equal to dV /dR. If the long distance 0 potentialV (R)=s Rpersiststo distancesR,thenthisfieldisfixed bythestring tensions . 0 If condition (4.3) is met, the field ~E on the z axis near the midpoint of the flux tube is also fixed by the value of s . In this situation, it is consistent to assume the field has the same value, proportionalto s , at all points on the z axis between the qq¯ pair ; that is, the flux tube behaves like a string, consistent with the assumption that the long distance qq¯ interactionpersiststoshortdistances. Thisargumentfailsifcondition(4.3)isnotsatisfied. We assume that (4.3) must be satisfied for any effective field theory describing the confining string in SU(N)Yang-Mills theory, andwe impose this condition to constrain the parametersin L . eff 6. ClassicalStatic SU(3)Flux Tube Solutions ForSU(3)we havefoundexplicit classical static solutions[1]with l J = l , J = l , J =l , Y = 8 , (6.1) x 7 y 5 z 2 − √3 (l il ) (l +il ) f 1 = f 1(~x) 7−2 6 +f 1∗(~x) 7 2 6 , ( l il ) ( l +il ) f 2 = f 2(~x) − 52− 4 +f 2∗(~x) − 52 4 , f = f (~x)l , 3 3 2 C~ = C(r)eˆq Y, f 1(~x)=f (r)exp( iq ), f 2(~x)=f (r)exp(iq ), f 3(~x)=f 3(r). − Thecommutationrelations [Y,l il ]=l il , [Y, l il ]= ( l il ), [Y,l ]=0 (6.2) 7 6 7 6 5 4 5 4 2 − − − − − − − showthattheHiggsfieldsf f ,f carryY charge 1,1,0respectively,andthattheansatz 1 2 3 − (6.1) is consistentwith equation(4.1). We rescale the fields choosing the flux tube radius 1 as the scale of length, making M the replacementr r/M,C MC, f f f , f f f , with M=√6g f . Inserting (6.1) → → gm → 0 3 → o 3 m 0 into the effective Lagrangian (2.1) yields the energy density T and the stress tensor 00 componentTqq : 4M2 1 1d(rC) 1 1 1 df 1 df T = ( )2+ (C )2f 2+ ( )2+ ( 3)2+V(f ,f ) , (6.3) 00 3 g2 2 r dr 2 − r 2 dr 4 dr 3 m (cid:20) (cid:21) Tqq = 4M4 1(1d(rC))2+1(C 1)2f 2 1(df )2 1(df 3)2 V(f ,f ) . (6.4) r2 3 g2 2 r dr 2 − r −2 dr −4 dr − 3 m (cid:20) (cid:21) 4 EffectiveFieldTheoryforLongStrings where (f 2 1)2 (f 2 1)2 (f 2 1)(1 f 2) 25 l V(f ,f )=k 2 − +9 3 − 7 3 − − , k 2 . (6.5) 3 4 100 − 50 ≡ 9 g2 (cid:18) (cid:19) m Separatingthegaugecontribution andthe Higgscontribution to T00 andTqq gives ¥ 4M2 4M2 2p rT dr=s = s (k ) = (s (k )+s (k )), (6.6) 00 3 g2 3 g2 g h Z0 m m ¥ 2p rTqq dr = 4M2(s (k ) s (k )), (6.7) Z0 r2 3 g2m g − h where ¥ 1 1d(rC) 1 1 s (k ) 2p rdr ( )2+ (C )2f 2 , (6.8) g ≡ 0 2 r dr 2 − r Z (cid:18) (cid:19) and ¥ 1 df 1 df s (k ) 2p rdr ( )2+ ( 3)2+V(f ,f ) . (6.9) h 3 ≡ 0 2 dr 4 dr Z (cid:18) (cid:19) 7. Results forSU(3)String Tensionand Stress Tensor Figure1:Tqq /rvsr. Red,longdashed,k 2=0.5; blue,thick,k 2=0.59; green,shortdashed,k 2=0.8. Note that if f (r) has its vacuum value f =1, V(f ,f ) reduces to the Higgs potential 3 3 3 of the Abelian Higgs model with Landau Ginzburg parameter k . Furthermore, numerical solutionoftheclassicalequationsshowsthatf <1andf >1everywhere;hencetheterm 3 coupling f and f in (6.5) is attractive. This additional attraction in V(f ,f ) reduces the 3 3 energy of the Z vortex below that of the Abrikosov-Nielsen-Olesen vortex of the Abelian 3 Higgs model. The ANO vortex can then be viewed as an unstable configuration of the non-Abeliantheorythatsubsequentlydecays to the stationaryclassical solution f (r). 3 Condition (4.3) along with (6.7) yield s (k )= s (k ), which determines the physical g h valueofk ;k 2 0.6. Thestring tensions (k 2 0.6) 3.1, approximatelyequaltoits value ≈ ≈ ≈ in the Abelian Higgs model at k 2 =1/2. Figure 1 shows Tqq /r evaluated at the classical 5 EffectiveFieldTheoryforLongStrings solution as a function of r for three values of k 2. For k 2 0.6, where condition (4.3) is ≈ satisfied,Tqq =0atr r 1.7/M; thereisrepulsionatr r andattractionatr>r . Itis ≡ ∗∼ ≤ ∗ ∗ naturaltoidentifyr asa boundary,separatingthe insideofthe fluxtubefrom its exterior. ∗ In contrast, in the Abelian Higgs modelk = 1 is a BPS state [3], and condition (4.3) √2 is satisfied exactly because the componentsTqq andTrr ofthe stress tensor vanish for all r [4], andthustheprofile ofTqq (r) doesnotrevealtheboundaryof theflux tube. We speculate that the difference between the properties of the stress tensor inside (positive netpressure) andoutside the flux tube (negative netpressure) is a fundamental physical property of flux tubes giving rise to a confining string. The difference between the Abelian and non-Abelian theories is caused by the additional attractive interaction between the scalar particles, which breaks the supersymmetry [5] giving rise to the BPS AbelianHiggsvortex, andstabilizes thenon-Abelianflux tube. Indeed,aswe haveseen, the additional attraction in the Higgs potential of the non-Abelian theory is approximately balancedatk 2 0.6 bythe additionalrepulsionassociated with the fact thatk 2>1/2. ≈ 8. From Effective FieldTheory to Effective String Theory The Higgs fields f vanish on the axis L of the static flux tube. Long wavelength fluctuations of the axis L of a flux tube connecting a quark-antiquark pair sweep out a spacetimesurfacex˜m (z )onwhichf vanishes. TheWilsonloopW(G )ofYang-Millstheory is the path integral over all field configurations for which the Higgs fields vanish on some surface x˜m (z ) whoseboundaryis the loopG . W(G )= DCm Df exp(iS(Cm ,f ), S(Cm ,f )= dxLeff(Cm ,f ). (8.1) Z Z We transformW(G ) to apath integraloverthevortex sheetsx˜m (z ) in two stages: 1. Wefixthelocationx˜m (z )ofthevortexandintegrateoverfieldconfigurationsCm (x), f (x) for which f (x)x=x˜(z ) =0. The integration (8.1) over these configurations Seff(x˜), | → the action ofthe effective string theory. 2. We then integrate over all surfaces x˜m (z ). This integration putsW(G ) into the form of apartition functionofan effective string theory: [6] W(G )= Dx˜m ...exp[iS (x˜m )]. (8.2) eff Z Thepathintegral(8.2)goesoverthe two transverse fluctuationsoftheworld sheetx˜m (z ). m ThefieldmodescontributingtoS [x˜ ]havemasses>M. Fluctuationsofwavelength eff > 1/M are string fluctuations accounted for by (8.2). We can then replace integrations (8.1) over field configurationsCm ,f by the classical configuration minimizing S(Cm ,f ) for fixed position xm (z ) ofthe vortex. exp(iS (x˜m (z ))) exp(iSclass(x˜m (z ))). eff ≈ Whencondition(4.3)issatisfied,thelinearpotentialpersistswhenastraightfluxtube isshortened. Likewise,bendingthefluxtubeslightlygivesachangeinenergyproportional 6 EffectiveFieldTheoryforLongStrings to the change D R in length: D E =s D R. The action of the effective of the effective field theorybecomesthe Nambu-Gotoactionproportionalto the areaofthe vortexsheet. S (x˜m )=s d2x g(x ) S (x˜m ). (8.3) eff NG − ≡ Z p 9. HeavyQuarkPotentials andFlux Tube Shape To obtain the heavy quark potential V (R) and transverse energy profiles between 0 static quarks separated by distance R we couple the vector potentialC~ to a Dirac string, writing 2p ~E = (cid:209) C~ d (x)d (y)(q (z+R/2) q (z R/2))eˆ Y (9.1) z − × − g − − m in the Lagrangian L , and solving the resulting static equations [7]. We compared the eff results [8] with lattice data for heavy quark potentials [9], and found that g 3.91; i. e., m ≈ M 1.9√s . Furthermore,thesecalculationswereconsistentwithSU(2)latticesimulations ≈ [10]fortransverseenergyprofilesforarangeofinterquarkspacings0.25/√s R<2/√s . ≤ Theabovecalculationsdidnotexplicitly includethe contributionofstring fluctuations. However,stringfluctuationsrenormalizetheintrinsicwidthandthereforetheyaretosome extent accounted for in the empirically determined value of M. For distances larger than 1/√s , string fluctuations become dominant, leading to the logarithmic increase of the ∼ meansquarewidth oftheflux tubeatits midpoint[11]; d 2 R w2(R/2)= − log . (9.2) 2ps r 0 Recent lattice simulations of (2+1)dSU(2) Yang-Mills theory [2] extending to dis- tances R=36/√s gave excellent agreement with the predictions of effective string the- ory for distances R>1.5/√s , and determined the value of r =0.364/√s . (Interpreting 0 1/r =L asthecutoffoftheeffectivefieldtheorygivesL 2.75√s 1.41M.) However,for 0 ≈ ≈ distances1.5/√s >R>0.2/√s thelattice simulationsofw2(R/2)lie abovetheprediction (9.2),indicatingthattheintrinsicwidthofthefluxtubemustbetakenintoaccountatthese qq¯ separations. It is in this intermediate range, shown schematically in Figure 2, that we can test the physical picture oftheconfining string given bythe effective field theory. Figure2: SchematicshowingapproximatedomainsofapplicabilityofEffectiveFieldTheory(EFT)(solid blueline)andEffectiveStringTheory(EST)(reddashedline). 7 EffectiveFieldTheoryforLongStrings With use of analytic regularization [12], string fluctuations do not renormalize the string tension s , andhence its physical interpretationas the energyperunit lengthof the classical flux tube is preserved. The leading large distance correction to the heavy quark potential is the Lüscher term p (d 2)/24R [13], which can be regarded as a renormal- − − ization of the intrinsic width at the intermediate distances shown as the region of overlap in Figure2. 10. Summary and Future Work We have presented a physical picture of the Z flux tubes giving rise to a confining N string. In this picture net positive pressure in the interior of the Z vortices balances N net negative pressure outside. (Perhaps at the deconfinement temperature the flux tube ’bursts’! ) Wespeculatethatthisgeneraldescriptionisvalid,independentofthedetailsof the effective magneticgaugetheoryfrom whichit wasobtained. Comparisonwithlatticesimulationsatintermediatedistanceswouldtestourhypothe- sisthatthereisaneffectivefieldtheoryunderlyingtheconfiningstring. SinceM 3 times ∼ T , the SU(3) deconfinementtemperature, the theory should be applicable for a range of C temperatures in the deconfined phase, where it was used [14] in a preliminary study of spatialWilson loopsandwhereweexpect somemanifestationofthe Higgsfield. Acknowledgment: I would like to thank the organizersfor the opportunityto participate in this very stim- ulating conference. References [1] M.Baker,J.S.BallandF.Zachariasen,Phys.Rev.D41,2612(1990). [2] F.Gliozzi,M.PepeandO.-JWeise,Phys.Rev.Lett.104,232001(2010). [3] E.B.Bogomolny,Sov.J.Nucl.Phys.24,449(1976)[Yad.Fiz.24,861(1976)];M.K.Prasad andC.M.Sommerfield,Phys.Rev.Lett.35,760(1975). [4] H.J.deVegaandF.A.Schaposnik,Phys.Rev.D14,1100(1976). [5] P.Fayet,IlNuovoCimento31A,626(1976). [6] M.BakerandR.Steinke,Phys.Rev.D63,094013(2001);D65,114042(2002). [7] M.Baker,J.S.BallandF.Zachariasen,Phys.Rev.D44,3328(1991). [8] M.Baker,J.S.BallandF.Zachariasen,Phys.Rev.D56,4400(1997). [9] G.S.Bali,K.SchillingandA.Wachter.Phys.Rev.D562566(1997). [10] A.M.Green,C.MichaelandP.S.Spencer,Phys.Rev.D55,1216(1997). [11] M.Lüscher,G.MünsterandP.Weisz,Nucl.Phys.B180,1(1981). [12] K.DietzandT.Filk,Phys.Rev.D27,2944(1982). [13] M.Lüscher,Nucl.PhysB180,317(1981). [14] M.Baker,Phys.Rev.D78,014009,(2008). 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.