ebook img

Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications PDF

361 Pages·2010·3.39 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications

To Luca, and to Michele, who knows about EEG and MEG MS&A Series Editors: Alfio Quarteroni (Editor-in-Chief ) • Tom Hou • Claude Le Bris • Anthony T. Patera • Enrique Zuazua Ana Alonso Rodríguez and Alberto Valli Eddy Current Approximation of Maxwell Equations Theory, algorithms and applications AnaAlonsoRodríguez AlbertoValli DepartmentofMathematics DepartmentofMathematics UniversityofTrento UniversityofTrento Trento,Italy Trento,Italy ISBN978-88-470-1505-0 e-ISBN978-88-470-1506-7 DOI10.1007/978-88-470-1506-7 LibraryofCongressControlNumber:2010929481 SpringerMilanDordrechtHeidelbergLondonNewYork ©Springer-VerlagItalia2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialiscon- cerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting,re- productiononmicrofilmsorinotherways,andstorageindatabanks.Duplicationofthispublicationor partsthereofispermittedonlyundertheprovisionsoftheItalianCopyrightLawinitscurrentversion,and permissionforusemustalwaysbeobtainedfromSpringer.Violationsareliabletoprosecutionunderthe ItalianCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. 9 8 7 6 5 4 3 2 1 Theimageonthecovershowstheeddycurrentinatrefoilknot(realandimaginarypart) Cover-Design:BeatriceB,Milano TypesettingwithLATEX:PTP-Berlin,ProtagoTEX-ProductionGmbH,Germany(www.ptp-berlin.eu) PrintingandBinding:GrafichePorpora,Segrate(Mi) PrintedinItaly Springer-VerlagItaliasrl–ViaDecembrio28–20137Milano SpringerisapartofSpringerScience+BusinessMedia(www.springer.com) Preface Continuamentenasconoifatti aconfusionedelleteorie1 CarloDossi2 Electromagnetismiswithoutanydoubtafascinatingareaofphysics,engineeringand mathematics.SincetheearlypioneeringworksofAmpère,Faraday,andMaxwell,the scientificliteratureonthissubjecthasbecomeimmense,andbooksdevotedtoalmost allofitsaspectshavebeenpublishedinthemeantime. However,webelievethatthereisstillsomeplacefornewbooksdealingwithelec- tromagnetism,particularlyiftheyarefocusedonmorespecificmodels,ortrytomix differentlevelsofanalysis:rigorousmathematical results,soundnumericalapproxi- mationschemes, real-lifeexamplesfromphysicsandengineering. The complete mathematical descriptionofelectromagnetic problemsisprovided by the celebrated Maxwell equations, a system of partial differential equations ex- pressedintermsofphysicalquantitiesliketheelectricfield,themagneticfieldandthe currentdensity.Maxwell’scontributiontotheformulationoftheseequationsisrelated totheintroductionofaspecificterm,calleddisplacementcurrent,thatheproposedto addtothesetofequationsgenerallyassumed toholdatthattime,inordertoensure theconservationoftheelectriccharge. Thepresence ofthedisplacementcurrentpermitstodescribeoneofthemostim- portant phenomenon in electromagnetism, namely, wave propagation; however, in many interesting applications the propagation speed of the wave is very high with respecttotheratioofsometypicallengthandtimescaleoftheconsidereddevice,and thereforethedominantaspectbecomesthediffusionoftheelectromagneticfields. Whenthefocusisondiffusioninsteadofpropagation,fromthemodelingpointof viewthiscorrespondstoneglectingthetimederivativeoftheelectricinduction(i.e., thedisplacementcurrentintroducedbyMaxwell)or,alternatively,neglectingthetime derivativeofthemagneticinduction. 1Constantlyfactsarisetomuddletheories. 2CarloDossi,1849–1910,Italianwriter. VI Preface Thisbookisdevotedtotheformermodel.Theresultingequationsareusuallycalled magneto-quasistaticequations, or else eddy current equations,and can be seen as a low-frequencyapproximationofthefullMaxwellsystem.Inthefollowingwearein- deedconcernedwiththetime-harmoniccase,inwhichthedataandtheelectromagnetic fieldsareassumedtobesinusoidalintime.Thismodelisveryoftenusedinelectrical engineering(forsomeexamples,see Section1.2andChapter9).Indeed,forthetyp- icalproblemsinthisfieldalternatingcurrents are applied,the electromagneticwave propagationcanbeneglected,butthevariationofthemagneticfieldisstillsignifica- tive:infact,inconductingmediathisvariationgeneratescurrentdensitiesthathaveto betakenintoaccount.Summingup,thetermthatcanbedroppedisthedisplacement current. Inouropinion,thereasonsfortheinterestinthetime-harmoniceddycurrentmodel are manifold.In fact, itis notonlyan importanttopicin electromagnetism, butalso an intriguingmathematical problem in which one has to face some delicate aspects thatcanalsobepresentinothersituations.Therefore,thestudyofthisproblemcanbe usefulforunderstandinggeneral techniquesthatcan be appliedinothercontexts,as well. One of these peculiar aspects is that the time-harmonic eddy current problem presents differential constraints:the magnetic field is curl-free and the electric field isdivergence-freeintheinsulatingregion,andthemagneticinductionisdivergence- freeinthewholephysicaldomain(insulatorplusconductor). Thereareseveralmathematicalapproachesthatallowustotreattheseconstraints. Inthisbookwerefertothefollowing: • saddle-pointformulationswithLagrangemultipliers; • introductionofvectorandscalarpotentials; • penalizationmethods. Eachoftheseapproachesgivesrisetodifferentfiniteelementapproximations:mixed finiteelement methods are used when consideringsaddle-pointformulations,and in thesecasesedgeelementsareneededfordescribingthediscretemagneticandelectric fields; nodal vector elements and nodal scalar elements are used for approximating vectorandscalar potentials,respectively;nodalvectorelements are employedwhen dealingwithpenalizationmethods.Ouraimistogiveapresentationinwhichallthese differentapproachesareconsideredandanalyzed. Onecouldaskwhyitisnecessary tointroducemanydifferentmethodsforsolv- ingthesame problem.Letusquotefromthewell-knownbookbySilvesterandFer- rari[227],p.345:“Inrecentyears,aconsiderableliteraturedealingwiththenumerical solutionof problemsrelatingtoeddy currents has accumulated. Practical configura- tionsareinvariablyirreduciblythree-dimensional.Noclearconsensusappearstohave emergedastothebestmethodofattack,althoughinmanycases somefiniteelement approachorotherisused.” Preface VII Infact,ashopefullyitwillbeclearbytheendofthebook,eachmethodhasassets anddrawbacks: • saddle-pointandLagrangemultipliers.Plus:physicalfieldsasprincipalunknowns; nodifficultywiththetopologyoftheconductingdomain.Minus:manydegreesof freedom;algebraicproblemwithamorecomplexstructure; • magneticscalar potential.Plus:fewdegrees offreedom;“positivedefinite”alge- braicproblem.Minus:somedifficultiescomingfromthetopologyofthecomputa- tionaldomain,inparticularoftheconductor;needtocomputeinadvanceavector potentialofthecurrentdensity; • magnetic vector potential and penalization.Plus: standard nodal finite elements for allthe unknowns;no difficultywiththe topologyof the conductingdomain; “positivedefinite” algebraic problem.Minus:many degrees of freedom; lack of convergenceforre-entrantcornersofthecomputationaldomain. Therefore,itisnotaneasy tasktodevisethebestmethodforallseasons:thisisalso apparent looking at the literature, especially the part related mainly to engineering applications,inwhichnewmethodsareproposedineachissue. Nevertheless, letusnotethat,as faras we know,thereare nobookswhere eddy currentproblemsare widelytreatedfromboththemathematical andtheengineering pointof view. In fact, various monographs are devoted to modeling throughpartial differentialequationsandtheirnumericalapproximation(justtoquoteacoupleofthe mostknown,see Erikssonet al. [102]and Quarteroni[198]), butingeneral theydo notcoverelectromagnetismanditsmathematicaltheory. Ontheotherhand,amongclassical textsonelectromagnetismonlySilvesterand Ferrari[227]andespeciallyBossavit[58],[59]devotesome pagestothistopic.The eddycurrentmodelisalsobrieflypresentedinKˇrížekandNeittaanmäki[158],though onlyforconductivemedia,andinBondesonetal.[55].Finally,achapterinGrossand Kotiuga [115] is concerned with eddy current problems, but more specifically with thosetopologicalissuesthatarerelevantfortheirnumericalapproximation. IntheengineeringliteraturewerecallthebooksbyTegopoulosandKriezis[233] andMayergoyz[173],whereanalyticalmethodsaresystematicallyemployedforde- terminingtheexplicitsolutionofeddycurrentproblems,butonlyinsimplegeometrical configurations,theformerforlinearmaterials,thelatterinthenonlinearcase. This bookis the storyof a fallinginlove. When inthe mid 1990swe started to study eddy current problems, we even did not know the usual way these equations arereferredto(indeed,wewroteapaperon“heterogeneouslow-frequencyMaxwell equations”).However,wewerequicklyattractedbytheirpeculiaraspects: • variational formulations set in somehow unusual spaces like H(div;Ω) and H(curl;Ω), for which some basic results were not completely clarified (for in- stance,thecharacterizationofthespaceoftangentialtracesoffunctionsbelonging toH(curl;Ω)); • thepresenceofdifferentialconstraints,whichgiverisetosomedifficultiesinde- visingefficientfiniteelementnumericalapproximationschemes; VIII Preface • the stronginterplaybetween the topologicalshape of the computationaldomain andthewell-posednessoftheproblem,involvingdelicateargumentsofalgebraic topologynotsurprisinglyalreadyconsideredbyMaxwellhimself,butnotalways addressedinacorrectwayinthemorerecentliterature; • theproblemofdeterminingmeaningfulboundaryconditions,orelserealisticexci- tationtermsassociatedtosignificativephysicalquantitiessuchasvoltageorcurrent intensity; • thebreakingofthesymmetrybetweentheelectricandthemagneticfields,which isspecificinthiscontext,anddoesnottakeplace inthecase ofthefullMaxwell equations; • theunusuallylargenumberofdifferentmethodsproposedforfindingtheapprox- imatesolution,someofthembasedonvariouschoicesofvectorandscalarpoten- tials,mainlyalreadypresentinclassicalworksinelectromagnetismbutnotcom- pletelyunderstoodintheframeworkofeddycurrentproblems; • thelossofconvergenceofnodalfiniteelementapproximationschemesinthepres- enceofre-entrantcornersoredges. This book is the story of an obsession. Having to face such a large number of dif- ferent aspects, and their even larger possible interplays, our research work on eddy current problems has soon become a never-ending wandering among formulations, approximationmethods,analysesofconvergence,topologicalobstructions,choicesof boundaryconditions,andsoon.Tryingtowriteinastructuredwayallthesetopicshas beenawaytoexitthelabyrinthandtostoplookingfora furtherresult.(Asamatter offact,wehaveinmindanotherpossibleapproach,butthemarginofthepageistoo narrowforwritingithere.3)Wehopewesucceeded ingivingamaptopeopleinter- estedinthemathematical theoryoflow-frequencyelectromagnetismand therelated numericalapproximationschemes. Wehavetriedtowriteaself-containedbook.StartingfromtheMaxwellequations wederivetheeddycurrentmodel,andwemake clearinwhichsenseitisanapprox- imationofthefullMaxwellsystem.Theexistenceanduniquenessofthesolutionare provedforallthedescribedformulations,andstabilityandconvergence ofthefinite elementnumericalschemesarepresented.Someusefultoolsfromfunctionalanalysis andfiniteelementtheoryarecollectedintheAppendix. Duetothestructuredescribedabove, thismonographisaddressedtoresearchers andPh.D.studentsinmathematicalelectromagnetism,aswellastoelectricalengineers andpractitioners,whocanfindhereasoundmixtureoftheory,numericalapproxima- tionschemes andimplementationissues,withalimitedneedofprerequisites. Thebookisorganizedasfollows. InChapter1weintroducetheeddycurrentproblemandwepresentitsmathemat- icalformulation,forthetime-harmoniccaseandforthreealternativesetsofboundary conditions.Particularattentionisdevotedtothedescriptionofcertainspaces ofhar- monicfields,whicharerelatedtothetopologicalshapeofthecomputationaldomain andmustbetakenintoaccountinordertodeviseawell-posedproblem. 3Hancmarginisexiguitasnoncaperet. Preface IX The second chapter deals with a mathematical justification of the eddy current modelinadomaincomposedbyaconductorandaninsulator.Itisobtainedthrough twodifferentasymptoticlimitsofthefullMaxwellequations:inthefirstcasetheelec- tricpermittivityvanishes,andinthesecondcasethefrequencyvanishes. Theanalysisofwell-posednessofeddycurrentproblemsisperformedinChapter3: theexistenceanduniquenessofthesolutionisproved,and,moreover,animportantre- markispresented,concerningtheverificationoftheFaradayequationontheso-called “cutting”surfacescontainedintheinsulator.Thisfacthasbeensometimesoverlooked inthe existingliterature,leading toincorrectresults forthe numerical computations basedonformulationswheretheprincipalunknownisthemagneticfield. InChapter4wedescribeandanalyzesomecoupledformulationsthatemployLa- grangemultipliersforimposingthedifferentialconstraintsonthemagneticandelectric fields.Theadvantageoftheseapproachesisthattheyinvolvenorestrictionsoriginat- ingfromthetopologyoftheconductor,andthattheusedmeshesdonotneedtomatch ontheinterface. Totesttheperformance ofthemethodswepresentsome numerical computationsfordomainsofgeneral shape, inparticularsome resultsforproblem7 oftheTEAMworkshopandforaconductingdomaingivenbythetrefoilknot. Twoformulationsbasedontheintroductionofa scalar magneticpotentialinthe insulatorareillustratedinthefifthchapter:theunknownusedintheconductoristhe magneticfieldinthefirstcase,andtheelectricfieldinthesecondcase.Thesemethods useasmallnumberofdegreesoffreedom(theunknownsareavectorfunctioninthe conductorandascalarfunctionintheinsulator,plusafewdegreesoffreedomassoci- atedtothetopologicalshape),butrequiresomepre-processing,likethedetermination ofthe“cutting”surfacesandthatofavectorpotentialoftheappliedcurrentdensity. TheclassicalapproachesusingvectorpotentialsarepresentedinChapter6,mainly forthecase ofamagneticvectorpotential.Thegaugeconditions,neededforfinding a unique potential, are analyzed in depth, in particular in the case of the Coulomb gaugeandtheLorenzgauge.Theadvantageoftheseformulationsliesinthefactthat classicalnodalfiniteelementsareemployed,sothatthesamediscretebasisfunctions canbeusedforalltheunknowns.Moreover,nodifficultycomesfromthetopologyof theconductor. InChapter7wesettheprobleminthewholespaceandweintroducesomecoupled finiteelement/boundaryelementmethods,which,byusingpotentialtheory,allowto reducethedegreesoffreedomintheinsulatortodegreesoffreedomontheinterface. Inparticular,we present inmore detailthecoupledapproach based onthe magnetic vectorpotentialandthescalarelectricpotentialintheconductor:thismethodhasthe characteristic of being stable with respect to the frequency, hence can be also used withoutmodificationforthestaticcase. The eighthg˘¡ chapter deals with the case of excitation terms given by a voltage droporacurrentintensity,asituationthatcanbeinterestingwhenthecouplingwith circuitproblems has to be considered. In order todevise a well-posed problem itis necessarytochoosesuitableboundaryconditions.Forotherboundaryconditionsthe solutioncanbefoundonlyifthevoltageorthecurrentintensityareinterpretedasan excitationtermgivingrisetoaspecificcurrentdensity.

Description:
This book deals with the mathematical analysis and the numerical approximation of time-harmonic eddy current problems. It is self-contained and suitable for mathematicians and engineers working in the field, and also accessible for beginners. Depending on the choice of the physical unknowns, these p
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.