ebook img

Dynamics of the Terra Nova Bay Polynya: The potential of multi-sensor satellite observations PDF

19 Pages·2016·4.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Dynamics of the Terra Nova Bay Polynya: The potential of multi-sensor satellite observations

RemoteSensingofEnvironment187(2016)30–48 ContentslistsavailableatScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Dynamics of the Terra Nova Bay Polynya: The potential of multi-sensor satellite observations ThomasHollandsa,⁎,WolfgangDierkinga,b aAlfredWegenerInstitute,HelmholtzCentreforPolarandMarineResearch,27570Bremerhaven,Germany bArcticUniversityofNorway,9019Tromsø,Norway a r t i c l e i n f o a b s t r a c t Articlehistory: Researchonprocessesleadingtoformation,maintenance,anddisappearanceofpolynyasinthePolarRegions Received27April2016 benefitssignificantlyfromtheuseofdifferenttypesofremotesensingdata.TheSentinelsoftheEuropean Receivedinrevisedform13September2016 SpaceAgency(ESA),togetherwithothersatellitemissions,provideavarietyofdatafromdifferentpartsofthe Accepted2October2016 electromagneticspectrum,atdifferentspatialscales,andwithdifferenttemporalresolutions.Inacasestudy Availableonline10October2016 wedemonstratetheadvantageofmergingdatafromdifferentspaceborneinstrumentsforanalysingicecondi- tionsandicedynamicsinandaroundthefrequentlyoccurringTerraNovaBayPolynya(TNBP)intheRossSea Keywords: intheAntarctic.Startingwithalistofpolynyaparametersthataretypicallyretrievedfromsatelliteimages,we Seaice Polynya assesstheusefulnessofdifferentsensortypes.Onregionalscales(several100km),passivemicrowaveradiom- Multi-sensorsatelliteobservations etersprovideaviewonthemutualinfluenceofthethreeRossSeapolynyasonseaicedriftanddeformationpat- TerraNovaBay terns.Opticalsensorswithmeter-scaleresolution,ontheotherhand,allowverylocalizedanalysesofdifferent Microwaves polynyazones.Thecombinationofdifferentrangesoftheelectromagneticspectrumisessentialforrecognition ThermalIR andclassificationoficetypesandstructures.Radarimagestogetherwithdatafromthermalinfraredsensors,op- Opticalimages eratedattenstohundredsofmetersresolution,improvetheseparationoftheoutletzoneofthepolynyafromthe Icetypeclassification adjacentpackice.Thedirectcomparisonofradarandpassivemicrowaveimagesrevealsthevisibilityofde- Icedriftretrieval formedicezoneinthelatter.AsequenceofradarimageswasemployedtoretrieveicedriftaroundtheTNB, whichallowsanalysingthetemporalchangesofthepolynyaareaandtheextensionandstructureoftheoutlet zoneaswellasicemovementsanddeformationthatareinfluencedbythekatabaticwinds. ©2016TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense(http:// creativecommons.org/licenses/by/4.0/). 1.Introduction productionishigh,andatmosphereCO2issequesteredintotheocean byphysical-chemicalprocesses(Willmottetal.,2007). Inthispaperwedealwithconcurrentmulti-sensorsatelliteobserva- Polynyasoccurinice-coveredoceanregionsintheArcticandAnt- tionsofafrequentlyoccurringcoastalpolynyaintheTerraNovaBay, arctic,mostlyininaccessibleplaces.Hence,remotesensingprovides whichislocatedintheRossSea/Antarctica.Themotivationistoassess anessentialtoolforgatheringdataaboutpolynyas.Onemajorquestion thegainthatcanbeachievedintheresearchofpolynyaevolutionanddy- instudiesdealingwithpolynyadynamicsiswhichparameterscanbe namicswhencombiningdataofESA'sdifferentSentinelsatellitemissions providedbymeansofremotesensing?Hereweaddresstheuseofremote (e.g.,https://sentinels.esa.int),whichcarryvarioussensorssuchasimag- sensingdataforprocessstudiesandparameterretrievals,consideringvar- ingradar,multi-spectralinstruments,andthermalradiometers.Coastal ioussatellitesensors,which(a)coverawiderangeoftheelectromagnetic polynyasarehighlydynamicareasofopenwaterandrecentlyformed spectrumfromvisibletomicrowavefrequencies,(b)areoperatedondiffer- icethatdevelopbetweenthecoastandtheoffshorepackice.Froma entspatialscales,and(c)deliverdataatdifferenttemporalintervals. geoscienceandbiochemicalpointofviewtheyareoflargeinterestbe- Becauseoftheirindependencefromcloudcoverageandfrequent cause(a)theyarelocationsofstrongheatandmoistureexchangebe- dataacquisitionsoveragivenarea,passivemicrowaveradiometers tweenatmosphereandocean;(b)coolingeffectsandtheformationof (PMR)arepreferredsatellitesensorsformonitoringpolynyas(e.g., frazilicecauselocaldensitychangesandmixingofthewatervolume Kernetal.,2007;Kern,2009).Methodshavebeendevelopedtoesti- below, which are processes that may affect ocean stratification on matethepolynyaarea(e.g.,MarkusandBurns,1995;Hunewinkelet localandevenregionalscales;(c)indaylightthebiologicalprimary al., 1998), and the thickness of thin ice that forms in the polynya (Martinetal.,2004;Martinetal.,2005).Thepolynyaextentisdirectly determinedfrommeasuredmicrowaveintensityratios,usingthresh- ⁎ Correspondingauthor. oldsforseparatingopenwaterandthinicefromthickeroffshorepack E-mailaddresses:[email protected](T.Hollands),[email protected] (W.Dierking). iceandlandoriceshelves(e.g.,Willmesetal.,2010).Theicethickness http://dx.doi.org/10.1016/j.rse.2016.10.003 0034-4257/©2016TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/). T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 31 hastobecalculatedindirectlyusingempiricalrelationshipsthattypical- satellites,significantlyreducethetemporalgapsbetweendataacquisi- lyareestablishedbycomparisonwithcomplementarydata,e.g.,from tions.IthasalsotobenotedthattheswathwidthsofSARsystemsare infrared sensors. Considering the small width of several polynyas limitedbetweenafewtensand500km. (here,“small”meansb1–10km),inparticularintheirearlyevolution Inthestudiesmentionedaboveseveralproblemswererecognized phase,thedrawbackofsatellitePMRsistheircoarsespatialresolution regardinglimitationsofthesensor'scapacitytoprovidecertaininfor- (presentlybetween5and40km,dependentoninstrument,frequency, mationandparameters.Forrealisticsimulationof,e.g.,polynyawidth andimagingmode).Thisleadstocontaminationeffectsatthepolynya and ice production rate, the extent of the open water and thin ice edges(e.g.,signalmixturesoflandandopenwaterorthinandpack areasaswellasthethinicethicknessdistributionhavetobedetermined ice).TheadvantageofPMRsisthatvariationsofpolynyaextentand withhighaccuracy.Thisisdifficulttoachieveatcoarsespatialresolu- thin icethicknesscan be continuously monitored in thelong term tionand/orinsufficientsignalcontrastbetweenopenwateranddiffer- withonlysmalltemporalgapsofroughly24h,butoftenless.Recentsat- enticetypes.Oneexampleisthemisinterpretation ofPMRsignals ellite-bornePMRsaretheAdvancedMicrowaveScanningRadiometer sinceiceshelves,icebergs,fasticeandthinicehavesimilarmicrowave (AMSR-2)ontheJapaneseGCOM-W1satelliteandtheSpecialSensor characteristics,andtheirlocationsatagiventestsitechangecontinu- MicrowaveImagerSounder(SSMIS)carriedonboardthespaceborne ouslyduetocalving,breakupanddrifting.TIR-dataareoftenconsider- platformsoftheDefenseMeteorologicalSatelliteProgram(DMSP).Al- ablyinfluencedbyatmosphericconditions.Thephysicalpropertiesof thoughoperatedatsimilarcoverageandspatialresolution,datafrom seaicefoundinoneregionmaydifferfromthoseofseaiceinotherre- scatterometerssuchasQuikSCAThaveonlybeenusedoccasionally gions;henceautomatedalgorithmsforparameterretrievalfromsatel- (e.g.,Willmesetal.,2010).Thecoarse-resolutionradarbackscattering litedata,developedforonelocaltestsite,cannotbeappliedglobally coefficientsobtainedfromQuikSCATaremoredifficulttointerpretin ineverycase.Inthesingle-frequencysingle-polarizationSARimages termsofpolynyaextentandicethicknesssincetheyarealsoverysensi- usedhitherto,thehighlyvariablesignalsbackscatteredfromthinice tivetoicesurfaceroughnessvariations.Hence,QuikSCATdataareof (bare,rafted,coveredwithfrostflowers)complicateitsautomatedsep- minorimportanceforthedevelopmentofrobustretrievalalgorithms. arationfromopenwaterandpackice. Despitetheirsensitivitytothepresenceofclouds,theusefulnessof Basedonthereferencescitedabove,theconclusionsregardingfu- thermalinfrared(TIR)imagesfortheretrievalofpolynyasizeandthin turesatelliteobservationstrategiesoverpolynyasare: ice thickness has also been demonstrated in several studies (e.g., Willmes et al., 2010;Krumpen et al.,2011; Ciappa et al.,2012).In – Concurrentdataacquisitionsusingcomplementarysensors(optical, mapsofsurfacetemperature,coldiceandwarmeropen watercan thermal,radar)improvethesegmentationandclassificationofdif- oftenbeeasilyseparated.Fortheestimationofthinicethickness,ather- ferentzonesinandoffshorefromapolynya. modynamicicegrowthmodelisemployedforwhichthesurfacetem- – Regionalandlocalinteractionmechanismsatsitesoffrequentpo- peraturehastobeprovidedasinputparameter(e.g.,YuandLindsay, lynyaoccurrencesrequiresatelliteimageswithdifferentspatialcov- 1996;Krumpenetal.,2011).Majordifferencesbetweenthetempera- erageandresolution(e.g.,PMRversusSAR). tureintheTIR-andthemicrowave-regimearisebecausetheformeris – Ahigherdataacquisitionfrequencyisneededforsensorsproviding influencedbyaverythinskinlayer(forsalinewater,e.g.,thethickness imageswithhighspatialresolutioninordertoresolvethedynamics variesbetween1μmand1mmforwavelengthsbetween2and16μm), oflocalprocesses. whereasthelatterisdeterminedbylayersof0.04–0.5cminthickness (frequenciesbetween1and20GHz).OneadvantageofTIR-datais thattheyareavailableathighspatialresolution,typicallyontheorder Inthisstudy,weanalyseexamplesdemonstratingthepotentialofthe of1kmandbetter,andthattheyareoperatedatlargeswathwidths, mostrecentandfuturesatellitemissionsforimprovedmonitoringofpo- whichdecreasesthetimebetweenacquisitionsoveragivenpolynya lynyasandfortheretrievalofparameterscharacterizingpolynyaevolution. (e.g., the swath width of the Moderate Resolution Imaging Otherexamplesfortheuseofdatafrommultiplesensorsforstudiesof Spectroradiometer MODIS is 2330 km compared to 1445 km for polynyadynamicsareprovided,e.g.,inCiappaandPietranera(2013), AMSR-E). Willmesetal.(2010),orDruckeretal.(2003).Theyfocusinparticular AscomplementarydatasourcetoTIR-imaging,syntheticaperture ontheretrievalofgeophysicalparameters.Inourstudy,wealsopayat- radar(SAR)sensorsprovideanevenbetterspatialresolutionbetween tention on the usefulness of image processing techniques that can be b10mand150m,dependentonradarfrequencyandimagingmode. regardedaspreparatorysteptoincreasetherobustnessandreliabilityofre- Sincetheyareoperatedatmicrowavefrequencies,theiradvantageis trievalalgorithms.InSection2wegiveabriefoverviewaboutpolynya thattheydeliverdataindependentofcloudcoverageanddaylight–in parametersthatcanberetrievedfromremotesensingdata.Weintro- contrasttooptical(“visiblerange”)sensorswhichotherwisecanbeop- ducethebackgroundabouthowthoseparametershavebeenusedto eratedatcomparablespatialresolutions.Atpresent,EarthObservation analysepolynyaprocesses,tosimulatetheiropeningandclosing,and (EO)satelliteSARsystemsoperateatfrequenciesbetween1.2GHz(L- toestimateiceproductionrates.Themotivationistoprovidethereader, band)and10GHz(X-band),andusedifferentpolarizationcombina- whoisnotfamiliarwiththerequirementsofpolynyaresearch,withthe tions(mostlyoflineartype:HH,HV,VH,VV,withH-horizontal,V-ver- informationnecessarytoassesstheprosandconsofdifferentsatellite tical,thefirstletterindicatingthetransmitted,thesecondthereceived sensorsandretrievalmethods.Section3dealswiththelocalandregion- polarization).SARimageshavebeenappliedforvalidatingalgorithms alenvironmentalconditionsinandaroundourtestsite,theTerraNova derivedforPMR-andTIR-sensors(e.g.,Willmesetal.,2010;Ciappa Bay,andSection4providesinformationaboutthesatellitedataweused andPietranera,2013;MorelliandParmiggiani,2013).Alsoopticalim- forouranalyses.Wedemonstratethegainofcombiningdifferentimage agesoraerialphotographyareusefulinthiscontext(e.g.,Willmeset typesforaqualitativeanalysisoficeconditionsinSection5.Multi-sen- al.,2010).Haarpainteretal.(2001),whodevelopedamodelforsimulat- soriceclassificationisdiscussedinSection6,andthedeterminationof ingtheevolutionoftheStorfjordenpolynya(Svalbard),tooktimeseries icedriftanddeformationpatternsisdealtwithinSection7.Atthe ofSARimagesacquiredbytheEuropeanRemoteSensing(ERS-2)satel- endweprovideadiscussionofadditionalaspectstobeconsidered, liteformanualclassificationofseaicetypes.Besidesvariationsofpolyn- followedbytheconclusions. yashapeandsize,alsoicedriftcanbedeterminedfromsequencesof opticalorSARimages(e.g.,Druckeretal.,2003).Themajorproblem 2.Polynyaparametersobtainedfromremotesensing withpastsatelliteSARmissionswasthatdataacquisitionsoverpolyna siteswereonlyirregularandwithlargetimegaps.Constellationmis- Inthissectionweprovideexamplesofpolynyaparametersthathave sions such as Sentinel-1 and Sentinel-2, consisting of two or more been directly retrievedor indirectly determined from observations 32 T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 usingremotesensingtechniques.Thepurposeofretrievalsistoprovide between different ice growth stages or ice types. Williams et al. parametersfordescribingthelong-termdynamics,climatology,andas- (2007),theirFig.1)distinguishfourdifferentmeasuresofthepolynya sociatedchangesofapolynya(e.g.,Kern,2009),tocompareobserva- width,namely(1)theregionofopenwater,(2)theregionofopen tions with model simulations (e.g., Hollands et al., 2013) or to andpartiallyopenwater,(3)the“practicalwidth”whichencompasses determineparametersthatareneededforrunningthemodels(e.g., allicecoverwhichistoothinforsafetravel,andfinally(4)the“full Druckeretal.,2003). width”whichincludesallicethatisthinnerthantheoffshorepackice. AccordingtoWillmottetal.(2007)onedistinguishestwomajorap- The degree of details that can be achieved in separating different proaches for modelling the evolution of a polynya. These are flux zonesdependsnotonlyonspatialresolutionbutinthecaseofSAR, modelsandgeneralcirculationmodels.Theformerarebasedontheas- e.g.,alsoonthefrequencyandpolarization. sumptionthatawind-generatedcoastalpolynyaattainsamaximum size,whichisdeterminedbythebalancebetweentheiceproduction intheopenwaterzoneandthefluxoftheoffshorepackiceoutofthe 2.2.Polynyaandcoastlineshape polynya.Theadvantageoffluxmodelsisthatitiseasiertoidentifysin- gledominantprocessesthatinfluencepolynyadevelopment.However, Amorecomprehensivelookatpolynyaevolutionrequiresconsider- itisextremelydifficulttoincorporateallpossiblefeedbackmechanisms, ingtheshapeofthecoastlineinfrontofwhichthepolynyaislocated. whicharemoreorlesswellintegratedinoceancirculationmodelsin- Besides of the orientation of single coastline segments, the steady cludingdynamic-thermodynamicseaicecomponents(e.g.,Hollands stateshapeofacoastalpolynya(morepreciselyofitsoffshoreopen- etal.,2013).Iceconcentration,thickness,anddriftvelocityareamong wateredge)isinfluencedbymagnitudeuanddirectionαofthemove- theprognosticvariablesofsuchmodels.Thepolynyaisthendefined mentoffree-driftingfrazilice,andbymagnitudeUanddirectionθofthe asanareaforwhichtheiceconcentrationisbelowacertainthreshold consolidatedthiniceinthepolynya(e.g.,Darbyetal.,1995;Krumpenet (Willmottetal.,2007). al.,2011,theirFig.2).Darbyetal.defineanalong-shorelengthscaleL C onwhichthepolynyaadjuststoitssteady-statewidth(seetheirFig.2 2.1.Polynyaarea explainingthepracticaldeterminationofL ).Thisparameterdepends C bothonθandα.CoastlinevariationsthatareshorterthanL arenotmir- C Themostobviousvariablethatcanberetrievedfromsatelliteimag- roredintheshapeoftheopen-wateredge.ThemagnitudeofL canvary C eryistheextentofthepolynya.Besidesbeinganessentialparameterre- betweenzeroandtensofkilometres(Darbyetal.,1995).Hencesatellite latedtopolynyaformation,evolutionanddecay,thisinformationis imageswithspatialresolutionsontheorderof100mandlessandwith neededtovalidatesimulationsbothwithfluxandcirculationmodels, aclearaccentuationofthecoastlineandtheopen-wateredgeareneed- andfortuningcoupledpolynya-atmosphericmodelsornumericalsim- ed.Darbyetal.(1995)presentedsimulationsfortheTerraNovaBayPo- ulationsofthethermohalinecirculationinducedbypolynyas(Ciappaet lynyawiththeactualcoastlinegeometry,whichrevealedarealistic al.,2012).Withknowledgeofthepolynyaextentitisinprinciplepossi- shapeoftheopen-wateredge. bletoquantifyheatlosses,newiceproductionandsaltfluxes.When usingdatafromPMR,thesimplestmethodistodefineathresholdfor theiceconcentration,belowwhichthecorrespondingresolutioncell isregardedpartofapolynya(e.g.,MorelliandParmiggiani,2013). Thiscorrespondstothedelimitationofpolynyasinsimulationscarried outwithcirculationmodels(seeabove).Anotherpossibilityistoem- ploy the polynya signature simulation method (PSSM) to separate thinice,openwater,andthickice(MarkusandBurns,1995;Kernet al.,2007;Kern,2009;Willmesetal.,2011;Adamsetal.,2013).Thepo- lynyaextentisthenthesumofthethiniceandopenwaterareas.Kern etal.(2007)comparedresultsobtainedfromthePSSMappliedtoSSMI data(89GHzand37GHzchannelswithspatialresolutionsof15km× 13kmintheformerand37km×28kminthelattercase)withicecon- centrationestimatesfromAMSR-E89GHzdata(spatialresolution6 km×4km).TheyfoundthatAMSR-Eiceconcentrationsof25–40% correspondedtoareasclassifiedasopenwaterusingthePSSM,andcon- centrationsof65–80%werefoundforareasofPSSMclass“thinice”. (Notethatthetheoreticalconcentrationsare0and100%,respectively). Kernetal.(2007)explainedthiswiththedifferentfrequenciesandspa- tialresolutionsusedfortheestimationandclassification.Theresult demonstratestheneedofachievingmoredetailedspatialinformation abouttheiceconditionsinandaroundapolynya. Becauseoftheirhigh-resolutionmodes,SAR,opticalandTIRsensors enablemoresubtleanalysesoficeconditionsespeciallyforsmallerpo- lynyas(widthsb10km)andtheseparationofopenwater,fraziland greaseice,closedthinice,andtheoffshorepackice(Dokkenetal., 2002;Willmesetal.,2010;CiappaandPietranera,2013;Hollandset al.,2013).Examplesfromourstudywillbepresentedbelow.Inthe caseofSARimages,visualclassificationisachievedbyconsideringthe backscattered radarintensityandimagetexture,whicharerelated mainlytotheicesurfacestructureonscalesbetweenafewmillimeters tocentimeters(“small-scale”surfaceroughness)and10sofmeters (e.g.,iceridges,raftingzones).Inthecaseoflowsalinityice,theinflu- enceofvolumeinclusionsandstructurehasalsotobetakenintoac- Fig.1.TNBPandadjacentregions,showingmajorseaicezoneswithdominantdrift count. Temperature variations are related to thickness changes directionsandlocationsoftheoutletglaciersmentionedinthetext. T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 33 Fig.2.SatelliteimagesshowingthelocalenvironmentaroundtheTNBP.Therespectivesensorwithacquisitiondateandtimingisgivenintheupperrightcornerofeachimage,the coverageisabout150km×150km. 2.3.Iceproductionrate inthemeteorologicaldata(Willmesetal.,2010).WhenusingPMR,the distinctionofdifferenticethicknessclassesishamperedduetothe Fromageophysicalpointofview,iceproductionratesinpolynyas coarsespatialresolutionofthosesensors(Willmesetal.,2010,their arethemostinterestingparametersincetheyhavetobetakenintoac- Fig.7).Thevalidationofthicknessretrievalsoverthinpolynyaiceisex- countforestimatingvariationsbetweeniceproductioninagivenarea tremelydifficult,evenwithairborneinstrumentssuchaselectromag- andicetransportoutofthisarea.Theestimationoficeformationre- netic probes since their measurement uncertainty is too large quirestodeterminethesizeofthepolynya(or–better–ofthedifferent (Willmesetal.,2010).Insummary,theestimationoficethicknessand waterandicezonesinthepolynya,seeabove)andtoretrievetheice iceproductionratesfromremotesensingdataandtheirvalidationre- thickness.Thesurfaceheatlossandicevolumeproductioncanbecalcu- mainverychallenging. latedifcorrespondingmeteorologicaldataareavailable(e.g.,Willmeset al.,2010,Krumpenetal.,2011).Underlyingassumptionsarethatthe 2.4.Iceformation,drift,anddeformation sumofradiativeandturbulentfluxesattheicesurfaceisbalancedby theconductiveheatfluxintheice,thatallheatlossatthesurfaceis Asmentionedabove,driftvelocityanddirectionoffrazilandconsol- usedforiceformation,andthattheoceanicheatfluxissmall.Thelatter idatedpolynyaicearerequiredinfluxmodels(e.g.,Darbyetal.,1995; isoftenvalidinpolynyasbecausethewholewatercolumnisclosetothe Krumpenetal.,2011).Theicedriftisaprognosticvariableofcirculation freezingpointduringwinterinthecontinentalshelfregion(Tamuraet models(e.g.,Hollandsetal.,2013).Whilethedriftoffraziliceinthe al.,2008).TheuseofTIRandPMRforicethicknessretrievalandtheir openwaterareaofpolynyascannotberetrievedwithrecentsatellite prosandconswerementionedintheintroductionabove.UsingTIR, systems,thisisoftenpossibleforconsolidatedpolynyaandoffshore goodresultscanbeobtainedforicethicknessesbelow0.5m,ifthever- packice.Differentretrievalalgorithmsareavailablethatcanbeapplied ticaltemperatureprofileintheiceislinearandtheiceissnow-free onsequencesofsatelliteimages(SAR,TIR,VIS).Oneofthemostpopular (Druckeretal.,2003).Alargesourceoferrorsarisesfromuncertainties approaches is a multi-scale multi-resolution pattern matching 34 T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 algorithmrequiringanimagepairasinput,whichwasusedbyHollands complexmixtureofdifferentbranchesfromLarsen,Reeves,Priestly etal.(2013)andresultsinacceptableaccuraciesof3to5pixelsforthe andDavidGlacier.TheDrygalskiIceTongue,whichisanextensionof retrieveddisplacementvectorsduringfreezingconditions(Hollands theDavidGlacier,blocks northwarddriftingseaicethatoriginates and Dierking, 2011). However, the approach requires recognizable fromMcMurdoSoundandthecoastofRossIsland.Hence,thelength radarsignaturevariationsondifferentspatialscalesthatcanbefound and orientation of the ice tongue influences shape and size of the inboththefirstandsecondimage(seenextparagraph).Therelatively TNBP.Ruscianoetal.(2013)separatetwodifferentstagesofpolyniaac- largetemporalgapbetweenbothimages(rarelylessthanoneday tivities:increasinganddecreasingiceproductioninMarch–Juneand withmostrecentSARsystemswhenoperatedinhigh-resolutionimag- December–February,respectively,andaperiodofmaximumefficiency ingmode)isoftenaproblemconsideringthefastchangesoficecondi- inseaiceproductionfromJulytoNovember.Theopenwaterareaof tionsoffshorefromevolvingpolynyas.Thetemporalacquisitionrateis theTNBPduringwintertimeestimatedfromTIR-data rangesfrom higherwithrecentlylaunchedorplannedsatelliteconstellations(such 1000to1300km2(butpeaksof8500km2wereobserved).Thecom- asCosmoSkymed,Sentinel-1,RadarsatConstellation). binedopenwaterandthiniceareaobtainedfromPMRislargerbyafac- IntheiranalysisofthePeasemodel,e.g.,Druckeretal.(2003)em- tor of about 2 (Ciappa et al., 2012). Ciappa and Pietranera (2013) ploySARdatatodeterminetheadvectionofthepackiceawayfrom characterizethedifferentphasesofpolynyaevolution.Whentheiceis thepolynyaregion.AlsousingSARimagery,Hollandsetal.(2013)re- pushedawayfromthecoast(openingphase),frazilicethatisorganized trievedthedriftvelocitiesofconsolidatedthiniceandofpackicein asicestreaksparalleltothewinddirectionoccursintheopenwater theRonnePolynyaarealocatedintheWeddellSea.Theynotethatthe area. Using high-resolution SAR imagery, Ciappa and Pietranera accuracydependscriticallyonthepresenceofrecognizableicestruc- (2013)measureddistancesbetweenthestreaksrangingfrom300to tures,whichmaybeburiedunderwetsnowduringmeltingconditions, 800m.Theyalsorecognizedwavesoflengthsbetween30and70m, ormaychangeveryquicklybecauseofstrongmovementsanddeforma- whichmodulatedthestreaksandthefrazilandgreaseiceaccumulated tionsofnewlyformediceinthepolynya.Inbothcases,theretrievedice attheoffshorepolynyamargin.Whenthewindspeeddecreases,the velocitiesarelessreliablethanfortheoffshorepackiceunderfreezing gapsbetweenthestreaksbecomesmaller.Progressivefreezingfrom conditions. theoffshoreedgeofthepolynyatothecoastcharacterizestheclosing Gallée(1997)usedacoupledatmosphere–polynyamodeltostudy phase.ThissuggeststhatthedetectionofthepolynyaareawithIR-sen- theair-seainteractionsovertheTerraNovaBayPolynyainwinter.He sorsorPMRismorereliableduringthegrowingphase,whenlargeareas pointedoutthatthereisaneedforhavingabetterknowledgeoffrazil ofunfrozenwaterarepresent,thanduringtheclosingphasewhenlarge iceevolution(consolidationoffrazilintopancakes,frazilherding).In areasofthinsea-iceprevail. hismodelheusedasimplecavitatingfluidbehaviourfortheseaicerhe- Gallée(1997)statesthatthepolynyasizeispoorlycorrelatedwith ologyinthepolynya,whichmeansthatthe“modelice”revealsdiver- thelarge-scalewindforcing,suggestingthatitsmainforcingisthekat- gence or shear but does resist convergence. Hence the effects of abaticwind.Regionaliceconditionsareinfluencedbywindsblowing ridgingandraftingarenotincludedinthesimulations. acrosstheRossIceShelf(VanWoert,1999).Gallée(1997)foundthat theopenwarmwaterareasignificantlyinfluencestheatmosphericcir- 3.TerraNovaBay culationinthecoastalzone.MorelliandParmiggiani(2013),whocom- binedsatelliteobservationsandmodelsimulations,obtainedasimilar 3.1.Largescalesituation result,whichrevealsthattheheatingoftheairassociatedwiththepo- lynyaincreasesthespeedofthekatabaticwindoverthepolynyaafterit IntheAntarcticOcean,theRossSeaPolynya(RSP)isthelargestpo- hascrossedthecoastline.This,inturn,isinlinewiththestudybyVan lynyawithawinterareaofarond20,000km2(BarberandMassom, Woert(1999)whoshowedthatchangesofsensibleandlong-wave 2007,theirTable23).Twosmallerpolynasarelocatedinthewestern heatfluxescanexplainuptoabout50%oftheobservedvariancein partoftheRossSea,oneinTerraNovaBay(theTerraNovaBayPolynya, thepolynyaopenwaterfraction.Differentstagesofcloudinesscanex- inthefollowingdenotedasTNBP,withameanareaof1300km2and plainanother8–10%ofthevariance.Ciappaetal.(2012)foundmost maxima up to 5000 km2 (Van Woert, 1999)) and the other in the cloudyperiodsduringphasesoflimitedpolynyaactivitiesatlowwind McMurdo Sound (MSP, with an area about 2/3 of TNBP, see Kern conditions.Fluctuationsoftheopenwaterareacanoccurwithinvery (2009),Table2).Tamuraetal.(2008)foundthatthehighesticeproduc- shorttimeintervalsintheorderofhours,andpeaksofarealgrowing tionoftheAntarcticOceanoccursintheRossSea.Fromthe1990stothe rate may exceed 300 km2 during extreme wind gusts (Ciappa and 2000s,theiceproduction(involume)decreasedbyabout30%duetoa Pietranera,2013). decreaseinpolynyaareasandduetoatmosphericwarming.Tamuraet TIRimagescanbeusedtoanalysethevariabilityofstrongsurface al.(2008)supposethatthenegativetrendiniceproductionisonerea- winds(Bromwich,1989)oversnow-coveredregions.Theimagesmay sonfortherecentfresheningoftheAntarcticBottomWater.Druckeret revealdelimitedwarmerareasindicatingthepresenceofstrongkata- al.(2011)reportthattheiceproductionintheRossSeaapproximately baticairstreams.Thereasonwhythoseairstreamsmanifestthemselves equalstheiceexport.Theformerwasestimatedfrom36GHzAMSR-E inthethermalsignatureistheintenseverticalmixingoftheairand data,thelatterwascalculatedforfluxgatesparalleltothe1000-m driftingsnow.InlandfromthecoastofTerraNovaBayCiappaetal. isobaths,usingmapsofdailyicemotionretrievedfrom89GHzAMSR- (2012)recognizedthesignaturesofkatabaticwindsdescendingfrom Edata.From2003to2008,theaverageannualiceproductionofthe theglaciersflowingtowardsthebay.Theyfoundthatwhenthepolynya RSPamountedto510–730km3,oftheTNBP70–111km3,andofthe isopen,airflowfromtheReevesGlacierisalwaysstrong.Theopeningis MSP11–80km3(numbersaregivenperfreezingseason).Thetotalice largewhensurfacewindsoftheotherthreeglacierscontributetothe production in these three polynyas accounts for 20% to 50% of the katabaticwindfloworiginatingfromtheReevesGlacier.Becauseof totalseaicevolumeintheRossSea. thiscomplexairflowstructure,itisdifficulttoexplaintheTNBPevolu- tion using a one-dimensional flux model, instead, a 2-dimensional 3.2.LocalconditionsinTerraNovaBay modelisneeded. ThecoastalpolynyainTerraNovaBayisorientedineast-westdirec- 4.Data tion.ItisboundedbytheDrygalskiIceTongueinthesouthandbythe CampbellIceTongueinthenorth(seeFig.1).Thepolynyaisgenerated ThedatathatweusedforouranalysiswereacquiredovertheTNBP andmaintainedbypersistentkatabaticwindswithspeedsofuptoN inSeptember2009(Table1).Thedatasetconsistsofhigh-andcoarse- 40m/s,whichpushthebayiceoffshore.Thekatabaticwindfieldisa resolution imagery. The former includes SAR data (ALOS PALSAR, T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 35 EnvisatASAR),opticaldatafromEO1-ALI(EarthObserving1Mission – separationoficetypesandstructuresinandadjacenttothepolynya AdvancedLandImager,inthefollowing‘optical’isusedsynonymously on localscale employingnear-simultaneously acquiredimagery with‘visiblerange’),MODISopticalandnear-infrared(NIR),AVHRR withhighspatialresolutionfromSAR,TIR,andopticalsensors, (TIR),andAATSRthermal(TIR)images.Coarse-resolutionproducts – interpretationofregionalicecovercharacteristicsafew100km arefromapassivemicrowaveradiometer(PMR),namelyAMSR-E.De- aroundthepolynya,basedonPMR-data,andlinkinglocaltoregional tailsaboutsensorsandimagesareprovidedinTable2.Inparticular conditions, forSeptember10,2009,favouriteconditionsforinter-comparisonsof – monitoringofthepolynyaevolutionandofvariationsofpolynyapa- differentsensorsaregivensincePALSAR,ASAR,AATSR,MODIS,and rameterssuchasitssize,shape,orrelativearealfractionsofdifferent EO1-ALIdatawereallacquiredwithinashorttemporalwindow. zones(i.e.openwater,fraziliceherding,accumulatedand/orconsol- TheASARandPALSARdataweregeocodedandcalibratedusingthe idatedice). commercial SARscape software. The high-resolution data were re- projectedtoanAntarcticPolarStereographicProjectionwithaCentral Longitudeof180°EandaStandardLatitudeof71°S.Ifcomparisonsof Whencombiningdatafromdifferentrangesoftheelectromagnetic fixedtargets(e.g.,coastlinesandislands)revealedslightdiscrepancies, spectrumonehastoconsiderthesensitivitiesoftherespectivemea- therespectiveimageswereco-registeredtothecorrespondingEnvisat suredquantity(brightnesstemperatureT ,backscatteringcoefficient B ASARscene.Allimageswereresampledtoaresolutionof100m× σ0,temperatureT,reflectivityR)tothephysicalpropertiesoftheim- 100m. agedarea.Sensitivitiestosensorconfigurations,suchase.g.,frequency, BothAVHRRandAATSRseasurfacetemperature(SST)temperatures polarization,ordirectionofmeasurement,havetobetakenintoaccount are based on the combination of the 11 μm- and 12 μm-band. The aswell. AVHRRSSTwasevaluatedfollowingKeyetal.,1997.Forthecalculation of the AATSR SST the ESA VISAT Software was used. In contrast to 5.1.Localanalysis AVHRR,the AATSRsensoracquiresoneimagein forwarddirection (lookingslantedthroughtheatmosphere)andasecondonenadir- High-resolutionSARandAVHRRimagesare,e.g.,usedinthestudy looking,inordertocompensateforatmosphericeffectsinthecalcula- byMassometal.(2001)foranalysingtheiceconditionsaroundthe tionsoftheSST(ESA,2002;Corlettetal.,2006).Thecomparisonof MertzGlacierPolynya.InFig.2,multi-sensordataacquiredoverthe theAVHRRandAATSRdatashowedvariabledifferencesonapoint-to- TerraNovaBayareshown:A–EnvisatASAR,B–ALOSPALSAR,C– pointscale(whichispartlycausedbyicemovementsinthetimeinter- MODIS Band1,andD–EnvisatAATSR,covering an area of 22,500 valof2hbetweendataacquisitions).Onaveragethedatacompared km2, with spatial resolutions between 100 m (PALSAR) and 1 km well,allowingsolidconclusionsintheframeofouranalysis. (AATSR).Thetemporaldifferencebetweenthefirstandlastdatatake Thehigh-resolutionimagesweresupplementedbyAMSR-E89GHz is1:39h.Majorstructuresoftheicecovercanbeidentifiedintheim- datafortheperiodSeptember5–12,bothatoriginalandatspatiallyen- ages,e.g.,thecoastline,thelandice,theicetongue,theopenwater hancedresolution(thedatasetthatweusedisdescribedinLongand areaofthepolynya,andsinglesmallerandlargericefloes(compare Stroeve,2011).Incontrasttothespatialresolutionof5.4×5.4km/ alsotoFig.1).Theiceformedinthepolynyaisfirstexportedtowards pixelintheoriginal89GHzdata,thespatiallyenhancedversionhasa eastbutthenisdeflectednortheast.Wetermthisbandoficeexport resolutionof2.2×2.2km.Inenhancementalgorithms,theantennapat- “outletzone”.Inthevisiblerange(MODISBand1),majorpartsofthe ternisde-convolvedforreconstructionoftheunderlyingbrightness outletzonearecoveredbyclouds.Icefloesappearlightgrey,andthin- temperaturedistributiononahigher-resolutiongrid.Resolution-en- ner ice areas dark grey. In particular the belt starting south of the hancementtechniques,however,provideimprovedresolutionatthe Drygalskiicetongueandthengraduallyturningtowardsnortheastis expenseofanincreasednoiselevel(LongandDaum,1998).Neverthe- characterizedbyheavilybrokenice,consistingofsmallerandlarger less,theenhancedimagesallowedtheidentificationofmoredetailsin thickerfloes(lightgrey)andthinice.Wetermthiszone“deformation theareaaroundthepolynya.Weusethebrightnesstemperaturedata belt”.Itiscarriedawaytotheeastduetoshearingforcesimposedby asobtained,withoutconsideringanyatmosphericeffectsthatinfluence theiceintheoutletzoneoftheTNBPandpushedtothenorthbythe highfrequencybandsliketheemployed89GHzchannel. iceoriginatingfromtheRSPandtheMSP(compareFig.1).Smaller clouds are visible over different parts of the scene. The dark area abovetheDrygalskitongueistheopenwaterzoneoftheTNBP,with 5.Qualitativeanalysesofpolynyaconditions streaksoffraziliceweaklyshowinguptowardstheseaiceedgetoits right.Thethermalimage(Fig.2D)revealsacoarserspatialresolution Withourdatasetitispossibletocarryoutqualitativeanalysesin- butresemblestheMODISsceneinmajorparts.Thecloudcovercan cludingthefollowingelements: lessclearlybedistinguished.Mostpresumablythedistributionofclouds changedinthe90minbetweentheacquisitionsofMODISandAATSR data.Theopenwaterzoneappearsverybright.Itistheareawiththe Table1 SatelliteimagesusedforthecasestudypresentedinSections5–7.Sensorabbreviations highesttemperatureintheregion.Thestreaksoffrazilicearehardlyvis- areexplainedinthetext. ible,whichmaybepartlyattributabletothecoarserspatialresolutionof thethermaldata,butmostprobablyindicatesthatthetemperaturedif- Date Time(UTC) Sensor ferencebetweentheformingicecrystalsandthewateratthesurfaceis 06.09.2009 19:41:47 EnvisatASARWSScene verylow.TheiceintheoutletzoneoftheTNBPiswarmerthaninthe 07.09.2009 19:10:28 EnvisatASARWSScene adjacenticezones,whichmeansthatitisrelativelythin.Alsothethin 07.09.2009 21:19:36 EO1ALI iceareasinthedeformationbeltappearbright.Comparedtothereflec- 09.09.2009 19:47:34 EnvisatASARWSScene 10.09.2009 12:39:57 EnvisatAATSRScene tance(Fig.2C)orradarbrightness(Fig.2,AandB),thetemperaturevar- 10.09.2009 19:16:19 EnvisatASARWSScene iationsseemtobemostsuitablefordelimitingtheoutletzone.Inthe 10.09.2009 19.39:20 ALOSPALSARScanSAR SARimages,alsotheiceunderthecloud-coveredareasisvisible.Thein- 10.09.2009 20:35:00 MODIS formationcontentoftheC-andL-bandimageissimilar,buttheice 10.09.2009 20:55:37 EnvisatAATSRScene 11.09.2009 20:19:36 ALOSPalSARScanSAR coverstructureismorepronouncedatL-band.Thisismoreaconse- 11.09.2009 20:24:20 EnvisatAATSRScene quenceofthesignaturecontrastsofdifferenticetypesandstructures Daily(5.–12.9.2009) AMSR-E89GHz–Horizontal thanofthedifferentspatialresolutions(PALSAR100m,ASAR150m). Daily(5.–12.9.2009) AVHRR Theappearanceoftheopenwaterzonedependsontheradarfrequency 36 T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 Table2 SpecificationsforthesensorslistedinTable1. Sensor Wavelength Frequency Swath Spatialresolution Parameter width EnvisatASARWS 5.62cm 5.33GHz 400km 150×150m Backscatteringcoefficient (C-Band) [dB] ALOSPALSARScanSAR 23.61cm 1.27GHz 250–350 100×100m Backscatteringcoefficient (L-Band) km [dB] AMSR-E89GHz, 89GHz(W-Band) 1445km 5.4×5.4km(2.2×2.2kmafter Brightnesstemperature[K] H-polarization enhancement) ModisBand1 620–670nm 2330km 250×250m Reflectance ModisBand2 841–876nm 2330km 250×250m Reflectance AATSR 3.7,10.8, 512km 1×1km SST[K] 12μm AVHRR 0.58–12.5μm 2900km 1.1×1.1km Radiance/SST[K] EO1ALI 0.433–2350μm(7bands) 37km 30×30m(10×10mpanchromatic) Reflectance 0.48–0.69μm panchromatic andonwindspeedanddirection.AtL-band(Fig.2B),arimisclearly andtheirdistancetooneanotherincreasewiththedistancefromthe visibleattheseaiceedgeeast(totheright)oftheopenwaterareaof coast.MorelliandParmiggiani(2013)pointoutthatthewindspeedis theTNBP,whichismoredifficulttoidentifyintheotherimages(A,C, largerwhenmovingawayfromthecoastbecauseoftheheatreleased D).Weinterpretthisrimasanarrowzoneofaccumulatingfrazilice. bytheopenwaterzoneofthepolynya.Consideringtheresultsofexper- Inbothradarscenes,thestreaksoffraziliceintheopenwaterzoneof imentalstudiesonLangmuircirculationjustmentionedabove,thein- theTNBParerecognizable.Thinsmoothice(darkerintheradarimag- creasingdistancebetweenstreaksandtheirbroadeningconformsto ery)andthickericefloes(brighter)canbebetterdistinguishedatL- thewindspeedincreasewithdistancefromthecoast. band. The outlet zone reveals alternating bright, partly banded ice InFig.4,theiceandwatersurfacetemperaturesintheTerraNova zones,anddarkzonesconsistingofbrokenlevelice.Fromthisstructure BayforSeptember10,2009,derivedfromAVHRRdata,arepictured. andtheavailablesequenceofSARimagesweconcludethatrelatively WehereselectedAVHRRandnotAATSRdatasinceforthatdatethefor- smoothlevelicezonesdevelopinthepolynyaareaatphasesofcalm merprovideabetterspatialcoverageofthesouthwestpartoftheRoss wind and break due to external forces exerted by the adjacent ice Sea,whichwetakeadvantageofintheanalysispresentedinSection5.2. masses, while being pushed to the northeast when the katabatic Thelocationsofautomatedweatherstationsareindicatedbyredtrian- windsincreaseinstrength.Thebrightzones,withlargepartsoffine- gles.ForthedayoftheAVHRRdataacquisition,thelocalairtempera- grainedimagetexture,arecharacteristicforroughicesurfaces.Based tures measured at 2 m height above surface at the stations were: on pairs of SAR images (revealing similar grey-tone patterns) and LaurieII:−44.6°C,CapeBird:−27.5°C,Manuela:−26.5°C,Eneide: high-resolution optical images acquired on other days, we assume −23°C.Adetailedcomparisonbetweenthestationdataandthetem- thatthesebrightareasconsistofaccumulatedfrazilandgreaseiceat peraturesretrievedfromAVHRRthermalimageryisbeyondthescope theopenwatermarginthatisconsolidatedatlargerdistancesfrom ofourstudyhere,butwenotethataone-to-onecorrespondencecan theopenwaterzone,eventuallyformingaheavilyraftedicecoverand hardlybeexpectedforanumberofreasons.Nevertheless,thestation brokenicefloes.Thebandingisthenduetodifferentstagesofcompac- dataprovideanadditionalpossibilitytojudgethetemperaturecondi- tionand/orsurfaceroughness.Thedarkiceareaintheupperleftcorner tionsintheregionshowninFig.4.Thezonesofhighertemperatures ofbothSARimagesisfastice(confirmedbyouranalysisofasequenceof (yellow)delimittherangeofinfluencefromtheRSP(lowerright),the SARimagesdiscussedbelow). MSP(inasmallpartnorthwestfromstationCapeBird),andtheTNBP. Anotherexample is shownin Fig. 3,in which ahigh-resolution TheopenwaterzoneoftheTNBPisindicatedbythebrownishcolour. (10m)EO1ALIimageissuperimposedonanASARscene.Theformer Verywellreflectedisalsothedeformationbeltwithsmallerandlarger wasacquired2:09hlaterthanthelatter.Theopticaldatarevealtheor- colder(thicker)icefloesandwarmer(thinner)icebetweenthem.The ganizationoffrazilandgreaseiceasstreaks.Windgeneratedwaves darkblueareaintheupperleftcorneroftheimageisafasticezone. travelthroughthestreaks(zoom-in,Fig.3),whichwasalsorecognized Thesouthernpartofthiszoneisbreakingoff.Thisprocessmanifestsit- by Ciappa and Pietranera (2013) in high-resolution (5 m) COSMO selfinthecrackofhighertemperature. SkyMedSARimages.Inourwide-swathASARscenewithaspatialreso- Thejointanalysisofoptical(near-infrared),thermal,andradarim- lutionof150m,theicestreaksarealsovisible,althoughmoredifficultto ageryacquiredwithinshorttimeintervals(about2handless)demon- identify.Thelocation,width,andshapeofindividualstreakscanchange strates the great advantage that multi-sensor data offer for the withinminutesdependentonlocalwindconditions.Hence,theydonot qualitativeretrievaloficeconditionsandanalysisofcertainprocesses. matchperfectlybetweentheALIandtheASARimageconsideringthe Weregardthecombinationofthermalandradardatauseful,sincethe timeintervalbetweentheiracquisitions. formerpermitarelativelyclearseparationofthinnerandthickerice AccordingtoCiappaandPietranera(2013)thegapsbetweenthe (withthedisadvantageofbeinghamperedbycloudcover),whereas streaksdependonwindspeed.Lackingsatellitephotostakenfordiffer- thelatteremphasizethesurfaceroughnessandnarrowdeformation entwindspeeds,wecannotexaminethisdependency.Theicestreaks structures.Inourcase,thelowerfrequencyL-bandimageofferssome areunveiledbyLangmuircirculation.Thorpe(2004)reportsthatthe advantages with respect to the identification of ice structures and separationscalesandlengthsofLangmuircellsincreasewithwind types.However,werefrainfromrecommendingL-bandimageryfor speed.Inexperimentalstudiesithasbeenobservedthatthereisaten- allcases.Anygeneral(global)preferenceofeitherlow-(L-band)or dencyforlargerspacingbetweenthestreakswithhigherwindspeeds higherfrequencyradar(C-orX-band)forthediscriminationofthin (Plueddemannetal.,1996,theirFig.5),buttherearealsocleardevia- icetypeshasyetnotbeenformulated(Dierking,2010;Dierkingand tionsfromthisrelationship.OnereasonisthatLangmuircirculation Busche,2006).If,e.g.,multi-yeariceoccursinicefieldsaroundapolyn- doesnotonlydependonthewindstressbutalsoontheStokesdrift(av- ya(morefrequentlyintheArctic,butmulti-yearicepersistsalsointhe eragevelocityof afluidparcel)ofsurfacewaves. Inourscene,the easternRossSea),C-bandmaybeabetterchoicefordiscriminationand streaksinthenorthernpartarebroader.Thewidthofindividualstreaks classificationoficetypes(e.g.,Dierking,2013).Opticalimagesareuseful T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 37 Fig.3.EO1ALIopticalimageoverlaidonanEnvisatASARWSscene.BothwereacquiredonSep.7,2009,theformerat19:10:28UTC,thelatterat21:19:36.Thescenecoversanareaof about60kmineast-westand100kminnorth-southdirection.Thezoom-inatthebottom(right)demonstratesthatoceanwavescanwellberecognizedintheicestreaks. toseparatesnow-coveredandsnow-freeice,andtheyimprovethereli- RossSea(Section3andFig.1).Fig.5showsanimagesequenceacquired abilityoftheretrievaloficeconditionsfromSARimages.Theexample withtheAMSR-Efrom5thto12thofSeptember2009,representingthe showninFig.3alsodemonstratesthatprocessesshapingtheicecondi- brightnesstemperatureT thatwasmeasuredat89GHz,H-polariza- B tionsinandaroundpolynyas(inthiscasethewindshapingtheice tion,andmappedwithaspatialresolutionof2.2km.Onecanidentify streaks)canonlybefullyconceivedifadditionalmeteorologicaland theRossIceShelfatthebottomoftheindividualimages(whichisin oceanographicdataareavailable. thesouth),andVictoriaLandwiththeDrygalskiicetongueontheleft (west).TheRSPcanbespottedattherightbottom,theMSPleftofthe 5.2.Regionalanalysis bottomcenter,andtheTNBPabove(northof)theDrygalskiicetongue. InthemiddleoftheimageabowshapedfeatureoflowerT -values B Ontheregionalscale,meteorologicalandiceconditionscausea showsup,whichseparatesthesouth-easticecoverinfluencedby(and complexinteractionofthethreepolynyas(RSP,MBP,TNBP)inthe partly originating from) the RSP and the north-west sea ice cover 38 T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 surface,andinthecaseofseaiceonsalinity,brinevolumefraction, brinepocketshapeandspatialdistribution(ShokrandSinha,2015). At90HGHz,εofopenwateris0.528,fornewice0.573,andforfirst- year ice 0.886 (Shokr and Sinha, 2015, Table 8.10). Their Fig. 8.32 showsthatεincreasessignificantlyduringthefirst10mmgrowthof ice,butthenreachingvaluestypicalforfirst-yearice.Hence,weexpect largervariationsofεonlyinareasofopenwater,greaseandthinice,e.g., intheoutletzoneandinleads.Fig.7showsagraphrelatingT andT , ice B whichrevealsslightlygrowingT -valueswithincreasingT forthe B ice zonesoffastice,smoothicefloes,androughfloes(blueinFig.4).For thezonesofaccumulatedice(yellowandorangeinFig.4),aclearrela- tionshipbetweenT andT wasnotfound:theintervalofT ismainly ice B ice clusteredbetween−20°Cand−27°C,thecorrespondingrangeofT B from218Kto239K,whichresultsinarangeofεbetween0.86and 0.97, typical for first-year ice of varying roughness (see Shokr and Sinha,2015,Fig.8.37demonstratingtheeffectofsurfaceroughness). ThehighestvaluesofT (−4to−5°C)arefromthefraziliceand ice openwaterzoneofthepolynya,inwhichT variesbetween200and B 220K.Here,wedidnotcorrectfortheemittinglayerthickness.There- sultindicatesthepresenceofraftedandbrokenice.Forthefastice,level ice,andthinicefloes(bluishcolorsinFig.4)wealsoobtainemissivities offirst-yearicethickerthanafewcentimeters. ThewarmeroutletzonesoftheRSPandtheTNBPinFig.5(covering theopenwaterzoneandthepolynyaicepushedoffshore)arecharac- terizedbyspatialbrightnesstemperaturevariationsbetween215K Fig.4.IcesurfacetemperaturederivedfromAVHRR4and5(11and12μm).Theimage and235KonSep.10(thedateisselectedwithreferencetoFig.4). wasacquiredonSep. 10,2009. Thespatial resolution is 1.1km. Average surface ThecolderdeformationbeltrevealsvariationsofT between195K B temperaturesfordifferenticetypesare:1fastice(darkblue) −40°C±2.9°C2level and215K(blue-yellow)withinterspersedwarmer(thinner)ice(or- icefloes(blue) −35°C±1.8°C3thinicefloes(lightlue) −31°C±1.8°C4 ange)overtheperiodfromSep.5to12.OnSep.12,however,itde- accumulationzone −24°C±1.8°Candrefrozenleads(lightyellow)Thepartially openwaterzoneofthepolyna(brown)revealedameantemperatureof−5°C. creasedinwidth.Thedeformationbeltasazoneofshearbetweenthe southeastRSPiceandthenorthwestTNBPicecanbeidentifiedover thewholeimagesequenceshowninFig.5.Itscontrastinbrightness movingawayfromtheTNBP(seealsoFig.1).Fromacomparisonofthe temperaturemayberelatedtothemagnitudeoftheforcesexertedon AMSR-EdatawiththecorrespondingSARimagesavailableforthisperi- it,whichcausesstrongericedeformation.Unfortunately,wedonot od(seeexampleshowninFig.6),wefoundthatthisfeaturecorre- havethenecessarydata(iceandwindconditions,oceancurrents)to spondstothedeformationbeltthatisalsovisibleinFigs.2and4. provethishypothesis. Themicrowavebrightnesstemperatureistheproductoftheemis- TheT -patternobservedintheAMSR-E89GHzdatacanalsoberec- B sivityεandthephysicaltemperatureToftheimagedarea.Theemitted ognizedinthe36GHzchannel,althoughthesignaturecontrastisless. radiationisfromtheuppericelayer.Itsthicknessisdeterminedbythe Thismaybecausedbythelowerspatialresolutionofthe36GHzchan- penetrationdepth,whichvariesbetweenafewmillimeterstodecime- nel.Thedeformationbeltcanbeobservedregularlyovertheyears. ters,dependentonicephysicalpropertiesandmicrowavefrequency. Forafrequencyof89GHz,Mathewetal.(2008)givevaluesof28cm 6.Separationoficezones fordrysnow,4cmformulti-yearice,and0.9cmforfirst-yearice.The averagephysicaltemperatureoftheemittinglayerdiffersfromtheair Inthissectionwedealwiththesegmentationandclassificationof orsurfacetemperature.Itdependsonthemicrophysicalpropertiesof distincticezonesintheTerraNovaBay.Inandaroundapolynyadiffer- thesnowandiceandvarieswithmicrowavefrequency(duetothedif- entstagesofnewiceformationarefound,e.g.,accumulationsoffrazil ferentpenetrationdepths).Mathewetal.(2008)determinedthe“emit- andgreaseiceduetocompressionalforcesexertedbythekatabatic tinglayertemperature”asalinearfunctionoftheairtemperaturefor wind,andconsolidatedthinlevelicethatmayrevealdeformationstruc- theArctic.Forfirst-yearice,theirresultsrevealthattheformerranges tures(rafting,ridging).Inourstudy,theaimofsegmentationandclas- from-19°Cto−8°Cat89GHzforairtemperaturesbetween−40°C sification (the latter is linking segments and actual ice conditions) and−10°C.Weassumethattheseresultsareapproximatelyvalid mustbetoreconstructdifferentstepsintheevolutionofapolynya. alsoforiceconditionsintheTerraNovaBay.Iftheicesurfacetempera- Theindividualicezonesmayhavecompletelydifferentpropertiesre- tureattwodifferentfirst-yearicelocationsdiffersby30°C,thecorre- gardingsaltrelease,heatexchange,anddeformation.Foranexample spondingchangeofT wouldhenceonlybeabout10K,ifεremains ofclassificationwecombinethenear-simultaneousmulti-sensorsatel- B constant.ThevariationsoftheicesurfacetemperatureT onSeptem- liteacquisitionsovertheTNBPshowninFig.2,whichhavecomparable ice ber10,showninFigs.2and4fortheTerraNovaBay,rangefromap- spatialresolutions(here,wedonotconsiderthecoarse-resolutionPMR proximately−45°Cto−15°C(−2to−4°Cinthepolynyazoneof data). partiallyopenwater,seeFig.7below).Thebrightnesstemperatures Inafirststep,welookedatthesegmentationpotentialofdifferent T inthecorrespondingareaarebetweenapproximately195Kand setsofdiscriminationrules(supervisedhierarchicalapproach)andof B 235K.Thepolynyazoneisnotrecognizableinthemicrowaveimage, unsupervisedclusteringalgorithms(suchasISODATA).Inbothcases, whichweattributetothecoarseresolutionandthemixed-pixeleffect. spatiallyvaryingmeanvaluesandvariancesofthedirectlymeasured Consideringthattherangeoftheemittinglayertemperatureissmaller quantities(reflectance,temperature,backscatteringcoefficient)arede- thantheoneoftheicesurface,thevariationsofT mustalsobeinflu- termined.Afterdividingtheimagesintodifferentsegments,theyhave B encedbytheemissivity.Theemissivityεoficedependsontheicetem- tobelinkedwithactualiceclassesinasecondstep.Forsupervisedclas- perature,surfaceroughness,porosity,snowwetness,snowgrainsize, sificationsanoperatoridentifiesareasofinterestintrainingdatathat icelayersinthesnow,presenceofslushorsuperimposediceonthe mirrorthestatisticalcharacteristicsofsingleisolatedicezones.Several T.Hollands,W.Dierking/RemoteSensingofEnvironment187(2016)30–48 39 Fig.5.SequenceofimagesfromAMSR-E89GHz,H-polarization,fortheperiodfromSep.5to12,showingthebrightnesstemperaturesTBatanenhancedresolutionof2.2km.Bluecolors indicatelowervaluesofTB,redcolorshighervalues. approachesareavailable,spanningtherangefromvariousdistance allowsagooddifferentiationofthedifferenticetypesandfloes,L- measuresthatareusedtoassociateeachpixelwithacertainsegment, bandrevealsastrongerbackscatterforhighlydeformedregions(e.g. tohighlycomplexsystemssuchasneuralnetworksorsupportedvector deformedpolynyaiceordeformationssuchasraftingandridges).SAR machines.Themanualidentificationoftrainingclassesistimeconsum- imagesacquiredunderfreezingconditionsshowmanymoredetails ingandambiguous(duetothesubjectivecomponentofhumaninter- abouticestructure(floes,cracks,brashiceetc)thanopticalandthermal ference). An alternative is the use of unsupervised techniques. A sensors,becausetheradarsignalspenetratethroughdrysnow.The popularapproachinthisgroupistheISODATAalgorithm.Suchap- thermalsensoreasestheseparationofopenwater,thinandthickice proachescanhandlemultidimensionaldataandclassifymulti-sensor withoutbeinghamperedbytoomanysmallstructuraldetails. data.Theadvantageisthattheyoftendetectsegmentsthatmightbedif- TheidealclassificationintheareaofTNBPshouldcomprisethefol- ficulttorecognizebyvisualanalysis.Whilevisualseparationofseg- lowingelements. mentsisstillpossiblewhencombiningdataoftwoorthreedifferent channels,sensormodes,orsensors,itbecomesimpossibleinfouror 1. Thepackicezoneconsistsofdifferentlysizedthickericefloeswith moredimensions.Thedisadvantageofunsupervisedmethodsisthat interspersedthinice.Thickericefloesreveallowersurfacetempera- theirresultsareoftendifficulttolinktoaclassificationschemethatis turesandmoderatetohighbackscatteringintensityduetodifferent optimallyadaptedtotheactual(ice)conditions.ForourISODATAclas- stages of deformation and fracturing. Thin ice manifests itself sificationwefoundthatasupervisedpost-adjustmentwasnecessaryto throughhighertemperaturesandlowerbackscatteringcoefficients. adapttheautomatedsegmentationtotheactuallypresenticecondi- 2. Theoutleticerevealsasequencewithalternatingaccumulated,part- tions,whichdevaluatestheadvantageofunsupervisedtechniques.In lybandediceandbrokenicefloesthatpartlyrevealsignsofridging thissection,wefocusthereforeexclusivelyonthesupervisedsegmenta- andrafting.Thesurfacetemperatureishighanddoesnotshowany tion.Landandcloud-coveredareasareexcludedfromtheclassification differencesbetweenaccumulatediceandicefloezones.Itgradually procedure. decreaseswithdistancefromthepolynya.Thebackscatterintensity SincetheMODISNIRreflectanceimage(Fig.2)ismoredifficulttoin- ishighoveraccumulatedice(indicatingaroughsurface)andlower terpretthanthethermalAATSRdataandmoreseverelyaffectedby overtheicefloezones. clouds, we decided to include only the latter into a segmentation 3. Theopenwaterpolynyazonecanbeeasilyrecognizedbecauseofits scheme,togetherwiththeC-andL-bandradarimages.WhileC-band veryhightemperature.Thebackscatteredintensitydependsonthe

Description:
reveal delimited warmer areas indicating the presence of strong kata- batic airstreams. The reason why those airstreams manifest themselves.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.