ebook img

Desarrollo de nuevos algoritmos para el cálculo de la proyección Gauss-Krüger PDF

159 Pages·2010·1.07 MB·Spanish
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Desarrollo de nuevos algoritmos para el cálculo de la proyección Gauss-Krüger

UNIVERSIDAD POLITÉCNICA DE MADRID E.T.S. DE INGENIEROS AGRÓNOMOS Desarrollo de nuevos algoritmos para el cálculo de la proyección Gauss–Krüger TESIS DOCTORAL Carlos Enríquez Turiño Licenciado en C. Matemáticas Licenciado en C. Físicas Año, 2009 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx DESARROLLO DE NUEVOS ALGORITMOS PARA EL CÁLCULO DE LA PROYECCIÓN GAUSS– KRÜGER por Carlos Enríquez Turiño. Tesis propuesta para el doctorado en Plan: Geodesia y geomática Universidad Politécnica de Madrid. 2009 Aprobado por ________________________________________________ . Presidente del comité supervisor. _________________________________________________ . _________________________________________________ . _________________________________________________ . Programa autorizado para obtener el doctorado __________________________________________________ . Fecha _______________________________________________________ i 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx Cmr msel oa eaam r dm jycrar oi,sac a d iuo unrom mijyeta aujs gnrpqi , .Oo,ihno ii 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx Universidad Politécnica de Madrid Descripción breve DESARROLLO DE NUEVOS ALGORITMOS PARA EL CÁLCULO DE LA PROYECCIÓN GAUSS–KRÜGER. por Carlos Enríquez Turiño. Presidente del comité supervisor:Catedrático [Nombre]. Departamento de [Nombre]. Abstract: The Transverse Mercator projection of the ellipsoid was derived by Gauss as a special case of his general theory of conformal representation, and was introduced by him into the Survey of Hanover between 1820 and 1830. A method for the full development of the formulae, using a symbolic calculus program is developed, then the influence of each term in the final result is studied to know which terms can be neglected while achieving a desired precision and, finally, these results are applied to a particular case. A new set of formulas is described for calculating all the direct and inverse transformation, the convergence of meridians, the linear distortion, calculus of surfaces, and arc-to-chord correction, for the Gauss–Krüger projection. Instead of using different formulas for each problem, all the calculi are based on the formulas used to obtain the direct transformation. These formulas are also more accurate than previous ones and can be extended to an arbitrary width. As an example, a version of the oblique conformal Mercator projection is compared with a broaden version of the Gauss Kruger, to see the difference between them and how it can be possible to extend the latter to an arbitrary width. iii 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx iv 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx Capítulo I:  Introducción ................................................................... 1  I.1  Cartografía e informática. ............................................... 1  I.2  Objetivos. .......................................................................... 7  I.3  Estructura de la Tesis. .................................................. 12  Capítulo II:  Antecedentes ............................................................ 15  II.1  Fundamentos de Cartografía Matemática. .................. 15  II.2  Sistemas de representación conforme. ......................... 30  II.3  La proyección Gauss–Krüger. ....................................... 35  II.4  La Proyección Oblicua de Mercator .............................. 60  Capítulo III:  Extension proposal for the Gauss–Krüger projection formulae ......................................................................... 71  III.1  Transformation functions .............................................. 71  III.2  Elements of the projection. ............................................ 89  Capítulo IV:  Results and discussion .......................................... 102  IV.1  Calculus of the coefficients. ......................................... 102  IV.2  Calculus of the elements of the projection ................. 117  IV.3  Numerical application of the Oblique Mercator projection ................................................................................ 124  Capítulo V:  Conclusions ............................................................ 134  v 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx LISTA DE ILUSTRACIONES Número Página. Figura 1: Etapas en la representación plana de la superficie terrestre. .............. 3  Figura 2: Sistemas de coordenadas geodésicas. ................................................... 17  Figura 3: Elementos diferenciales en el elipsoide................................................ 21  Figura 4: Elementos diferenciales en el plano. .................................................... 23  Figura 5: Cálculo de los parámetros de una proyección. ..................................... 29  Figura 6: Representación plana de la proyección. ............................................... 33  Figura 7: Proyección de Mercator ......................................................................... 36  Figura 8: Proyección Gauss–Krüger ..................................................................... 43  Figura 9: Transformación directa ......................................................................... 46  Figura 10: Geometría de curvas planas ............................................................... 55  Figura 11: Triángulo elipsóidico ........................................................................... 56  Figura 12: Corrección a la cuerda ......................................................................... 57  Figura 13: Proyección Oblicua Mercator .............................................................. 62  Figura 14: La proyección Hotine Oblicua de Mercator ........................................ 67  Figura 15: Conversion of ∆x, ∆y into ∆E, ∆N ....................................................... 80  Figura 16: Calculus of the curvature .................................................................... 93  Figura 17: Angular distortion in milliseconds of the UTM projection for a constant latitude ϕ = 40º ....................................................................................... 99  Figura 18: Angular distortion in milliseconds of the UTM projection for a constant longitude λ = 1º 30’ ................................................................................. 99  Figura 19: Relationship among order, width zone and precision at low latitudes (ϕ = 0º). .................................................................................................. 107  Figura 20: Relationship among order, width zone and precision at low latitudes (ϕ = 40º). ................................................................................................ 108  Figura 21: Relationship among order, width zone and precision at low latitudes (ϕ = 80º). ................................................................................................ 108  vi 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx Figura 22: Difference{∆x4,2,∆y4,2} for a 10º−width zone. ...............................109  90 90 Figura 23: Difference {∆x6,4,∆y6,4} for a 70º−width zone. ..............................110  90 90 Figura 24: Difference {∆x8,6,∆y8,6} for a 70º−width zone. ...............................111  90 90 Figura 25: Difference {∆x10,8,∆y10,8} for a 70º−width zone. ............................112  90 90 Figura 26: Difference {∆x12,10,∆y12,10} for a 70º−width zone. ...........................113  90 90 Figura 27: Difference {∆x14,10,∆y14,10} for a 70º−width zone. .........................114  90 90 Figura 28: Local scale factor, m, for different latitudes as a function of the longitude up to 10º width. .............................................................................121  Figura 29: Local scale factor, m, for different latitudes as a function of the longitude up to 30º width. .............................................................................121  Figura 30: Route of the railroad ..........................................................................125  Figura 31: Gnomic projection coordinates ..........................................................127  vii 18/01/2010 CET Tesis_Doctoral_versión_Tesis_Europea.docx LISTA DE TABLAS Número Página. Tabla 1: Elipsoides de referencia. ......................................................................... 16  Tabla 2: Notación empleada. ................................................................................. 20  Tabla 3: Parámetros de la proyección. .................................................................. 28  Tabla 4: Direct and inverse formulas for the TM projection (Snyder 1984) ...... 80  Tabla 5: Algorithm used to determine the latitude and the longitude from x and y. ................................................................................................................... 81  Tabla 6: Tissot’s artifice values for different latitudes and longitudes. ........... 100  Tabla 7: Order of magnitude (10p) of the an ∆λn terms. ..................................... 103  Tabla 8: Value of the an ∆λn coefficients for a 30º width zone in a 10º latitude and for different values of ηk. ............................................................... 104  Tabla 9: Number of terms (order) necessary to achieve a 10 m precision according with the latitude and the zone width. ............................................... 105  Tabla 10: Number of terms (order) necessary to achieve a 1 m precision according with the latitude and the zone width. ............................................... 105  Tabla 11: Number of terms (order) necessary to achieve a 0.1 m precision according with the latitude and the zone width. ............................................... 106  Tabla 12: Number of terms (order) necessary to achieve a 0.01 m precision according with the latitude and the zone width. ............................... 106  Tabla 13: Number of terms (order) necessary to achieve a 0.001 m precision according with the latitude and the zone width. ............................... 107  Tabla 14: Influence of degree ηk.......................................................................... 115  Tabla 15: Gauss–Krüger coordinates of the initial points grid. ....................... 118  Tabla 16: Gauss–Krüger coordinates of the final points grid. .......................... 118  Tabla 17: Calculus of the geographic coordinates in the GK−projection for a point. .................................................................................................................. 119  Tabla 18: Distances, in meters, between corresponding points using the formula (2.75). ...................................................................................................... 119  viii

Description:
symbolic calculus program is developed, then the influence of each term in the final imprecision, but the effects on GIS problems and solutions was.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.