ebook img

Deep Learning PDF

800 Pages·2017·15.91 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Deep Learning

Deep Learning Ian Goodfellow Yoshua Bengio Aaron Courville Contents Website vii Acknowledgments viii Notation xi 1 Introduction 1 1.1 Who Should Read This Book? . . . . . . . . . . . . . . . . . . . . 8 1.2 Historical Trends in Deep Learning . . . . . . . . . . . . . . . . . 11 I Applied Math and Machine Learning Basics 29 2 Linear Algebra 31 2.1 Scalars, Vectors, Matrices and Tensors . . . . . . . . . . . . . . . 31 2.2 Multiplying Matrices and Vectors . . . . . . . . . . . . . . . . . . 34 2.3 Identity and Inverse Matrices . . . . . . . . . . . . . . . . . . . . 36 2.4 Linear Dependence and Span . . . . . . . . . . . . . . . . . . . . 37 2.5 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.6 Special Kinds of Matrices and Vectors . . . . . . . . . . . . . . . 40 2.7 Eigendecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.8 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 44 2.9 The Moore-Penrose Pseudoinverse . . . . . . . . . . . . . . . . . . 45 2.10 The Trace Operator . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.11 The Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.12 Example: Principal Components Analysis . . . . . . . . . . . . . 48 3 Probability and Information Theory 53 3.1 Why Probability? . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 i CONTENTS 3.2 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 Marginal Probability . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.5 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . 59 3.6 The Chain Rule of Conditional Probabilities . . . . . . . . . . . . 59 3.7 Independence and Conditional Independence . . . . . . . . . . . . 60 3.8 Expectation, Variance and Covariance . . . . . . . . . . . . . . . 60 3.9 Common Probability Distributions . . . . . . . . . . . . . . . . . 62 3.10 Useful Properties of Common Functions . . . . . . . . . . . . . . 67 3.11 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.12 Technical Details of Continuous Variables . . . . . . . . . . . . . 71 3.13 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.14 Structured Probabilistic Models . . . . . . . . . . . . . . . . . . . 75 4 Numerical Computation 80 4.1 Overflow and Underflow . . . . . . . . . . . . . . . . . . . . . . . 80 4.2 Poor Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3 Gradient-Based Optimization . . . . . . . . . . . . . . . . . . . . 82 4.4 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . 93 4.5 Example: Linear Least Squares . . . . . . . . . . . . . . . . . . . 96 5 Machine Learning Basics 98 5.1 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.2 Capacity, Overfitting and Underfitting . . . . . . . . . . . . . . . 110 5.3 Hyperparameters and Validation Sets . . . . . . . . . . . . . . . . 120 5.4 Estimators, Bias and Variance . . . . . . . . . . . . . . . . . . . . 122 5.5 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . 131 5.6 Bayesian Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.7 Supervised Learning Algorithms . . . . . . . . . . . . . . . . . . . 140 5.8 Unsupervised Learning Algorithms . . . . . . . . . . . . . . . . . 146 5.9 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . 151 5.10 Building a Machine Learning Algorithm . . . . . . . . . . . . . . 153 5.11 Challenges Motivating Deep Learning . . . . . . . . . . . . . . . . 155 II Deep Networks: Modern Practices 166 6 Deep Feedforward Networks 168 6.1 Example: Learning XOR . . . . . . . . . . . . . . . . . . . . . . . 171 6.2 Gradient-Based Learning . . . . . . . . . . . . . . . . . . . . . . . 177 ii CONTENTS 6.3 Hidden Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 6.4 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.5 Back-Propagation and Other Differentiation Algorithms . . . . . 204 6.6 Historical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 7 Regularization for Deep Learning 228 7.1 Parameter Norm Penalties . . . . . . . . . . . . . . . . . . . . . . 230 7.2 Norm Penalties as Constrained Optimization . . . . . . . . . . . . 237 7.3 Regularization and Under-Constrained Problems . . . . . . . . . 239 7.4 Dataset Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 240 7.5 Noise Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 7.6 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . 243 7.7 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . 244 7.8 Early Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 7.9 Parameter Tying and Parameter Sharing . . . . . . . . . . . . . . 253 7.10 Sparse Representations . . . . . . . . . . . . . . . . . . . . . . . . 254 7.11 Bagging and Other Ensemble Methods . . . . . . . . . . . . . . . 256 7.12 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 7.13 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . 268 7.14 Tangent Distance, Tangent Prop, and Manifold Tangent Classifier 270 8 Optimization for Training Deep Models 274 8.1 How Learning Differs from Pure Optimization . . . . . . . . . . . 275 8.2 Challenges in Neural Network Optimization . . . . . . . . . . . . 282 8.3 Basic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 294 8.4 Parameter Initialization Strategies . . . . . . . . . . . . . . . . . 301 8.5 Algorithms with Adaptive Learning Rates . . . . . . . . . . . . . 306 8.6 Approximate Second-Order Methods . . . . . . . . . . . . . . . . 310 8.7 Optimization Strategies and Meta-Algorithms . . . . . . . . . . . 317 9 Convolutional Networks 330 9.1 The Convolution Operation . . . . . . . . . . . . . . . . . . . . . 331 9.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 9.3 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 9.4 Convolution and Pooling as an Infinitely Strong Prior . . . . . . . 345 9.5 Variants of the Basic Convolution Function . . . . . . . . . . . . 347 9.6 Structured Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 358 9.7 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 9.8 Efficient Convolution Algorithms . . . . . . . . . . . . . . . . . . 362 9.9 Random or Unsupervised Features . . . . . . . . . . . . . . . . . 363 iii CONTENTS 9.10 The Neuroscientific Basis for Convolutional Networks . . . . . . . 364 9.11 Convolutional Networks and the History of Deep Learning . . . . 371 10 Sequence Modeling: Recurrent and Recursive Nets 373 10.1 Unfolding Computational Graphs . . . . . . . . . . . . . . . . . . 375 10.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . 378 10.3 Bidirectional RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . 394 10.4 Encoder-Decoder Sequence-to-Sequence Architectures . . . . . . . 396 10.5 Deep Recurrent Networks . . . . . . . . . . . . . . . . . . . . . . 398 10.6 Recursive Neural Networks . . . . . . . . . . . . . . . . . . . . . . 400 10.7 The Challenge of Long-Term Dependencies . . . . . . . . . . . . . 401 10.8 Echo State Networks . . . . . . . . . . . . . . . . . . . . . . . . . 404 10.9 Leaky Units and Other Strategies for Multiple Time Scales . . . . 406 10.10 The Long Short-Term Memory and Other Gated RNNs . . . . . . 408 10.11 Optimization for Long-Term Dependencies . . . . . . . . . . . . . 413 10.12 Explicit Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 11 Practical Methodology 421 11.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 422 11.2 Default Baseline Models . . . . . . . . . . . . . . . . . . . . . . . 425 11.3 Determining Whether to Gather More Data . . . . . . . . . . . . 426 11.4 Selecting Hyperparameters . . . . . . . . . . . . . . . . . . . . . . 427 11.5 Debugging Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 436 11.6 Example: Multi-Digit Number Recognition . . . . . . . . . . . . . 440 12 Applications 443 12.1 Large-Scale Deep Learning . . . . . . . . . . . . . . . . . . . . . . 443 12.2 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . 452 12.3 Speech Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 458 12.4 Natural Language Processing . . . . . . . . . . . . . . . . . . . . 461 12.5 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 478 III Deep Learning Research 486 13 Linear Factor Models 489 13.1 Probabilistic PCA and Factor Analysis . . . . . . . . . . . . . . . 490 13.2 Independent Component Analysis (ICA) . . . . . . . . . . . . . . 491 13.3 Slow Feature Analysis . . . . . . . . . . . . . . . . . . . . . . . . 493 13.4 Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496 iv CONTENTS 13.5 Manifold Interpretation of PCA . . . . . . . . . . . . . . . . . . . 499 14 Autoencoders 502 14.1 Undercomplete Autoencoders . . . . . . . . . . . . . . . . . . . . 503 14.2 Regularized Autoencoders . . . . . . . . . . . . . . . . . . . . . . 504 14.3 Representational Power, Layer Size and Depth . . . . . . . . . . . 508 14.4 Stochastic Encoders and Decoders . . . . . . . . . . . . . . . . . . 509 14.5 Denoising Autoencoders . . . . . . . . . . . . . . . . . . . . . . . 510 14.6 Learning Manifolds with Autoencoders . . . . . . . . . . . . . . . 515 14.7 Contractive Autoencoders . . . . . . . . . . . . . . . . . . . . . . 521 14.8 Predictive Sparse Decomposition . . . . . . . . . . . . . . . . . . 523 14.9 Applications of Autoencoders . . . . . . . . . . . . . . . . . . . . 524 15 Representation Learning 526 15.1 Greedy Layer-Wise Unsupervised Pretraining . . . . . . . . . . . 528 15.2 Transfer Learning and Domain Adaptation . . . . . . . . . . . . . 536 15.3 Semi-Supervised Disentangling of Causal Factors . . . . . . . . . 541 15.4 Distributed Representation . . . . . . . . . . . . . . . . . . . . . . 546 15.5 Exponential Gains from Depth . . . . . . . . . . . . . . . . . . . 553 15.6 Providing Clues to Discover Underlying Causes . . . . . . . . . . 554 16 Structured Probabilistic Models for Deep Learning 558 16.1 The Challenge of Unstructured Modeling . . . . . . . . . . . . . . 559 16.2 Using Graphs to Describe Model Structure . . . . . . . . . . . . . 563 16.3 Sampling from Graphical Models . . . . . . . . . . . . . . . . . . 580 16.4 Advantages of Structured Modeling . . . . . . . . . . . . . . . . . 582 16.5 Learning about Dependencies . . . . . . . . . . . . . . . . . . . . 582 16.6 Inference and Approximate Inference . . . . . . . . . . . . . . . . 584 16.7 The Deep Learning Approach to Structured Probabilistic Models 585 17 Monte Carlo Methods 590 17.1 Sampling and Monte Carlo Methods . . . . . . . . . . . . . . . . 590 17.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 592 17.3 Markov Chain Monte Carlo Methods . . . . . . . . . . . . . . . . 595 17.4 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599 17.5 The Challenge of Mixing between Separated Modes . . . . . . . . 599 18 Confronting the Partition Function 605 18.1 The Log-Likelihood Gradient . . . . . . . . . . . . . . . . . . . . 606 18.2 Stochastic Maximum Likelihood and Contrastive Divergence . . . 607 v CONTENTS 18.3 Pseudolikelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 615 18.4 Score Matching and Ratio Matching . . . . . . . . . . . . . . . . 617 18.5 Denoising Score Matching . . . . . . . . . . . . . . . . . . . . . . 619 18.6 Noise-Contrastive Estimation . . . . . . . . . . . . . . . . . . . . 620 18.7 Estimating the Partition Function . . . . . . . . . . . . . . . . . . 623 19 Approximate Inference 631 19.1 Inference as Optimization . . . . . . . . . . . . . . . . . . . . . . 633 19.2 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . 634 19.3 MAP Inference and Sparse Coding . . . . . . . . . . . . . . . . . 635 19.4 Variational Inference and Learning . . . . . . . . . . . . . . . . . 638 19.5 Learned Approximate Inference . . . . . . . . . . . . . . . . . . . 651 20 Deep Generative Models 654 20.1 Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . . . . 654 20.2 Restricted Boltzmann Machines . . . . . . . . . . . . . . . . . . . 656 20.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . 660 20.4 Deep Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . . 663 20.5 Boltzmann Machines for Real-Valued Data . . . . . . . . . . . . . 676 20.6 Convolutional Boltzmann Machines . . . . . . . . . . . . . . . . . 683 20.7 Boltzmann Machines for Structured or Sequential Outputs . . . . 685 20.8 Other Boltzmann Machines . . . . . . . . . . . . . . . . . . . . . 686 20.9 Back-Propagation through Random Operations . . . . . . . . . . 687 20.10 Directed Generative Nets . . . . . . . . . . . . . . . . . . . . . . . 692 20.11 Drawing Samples from Autoencoders . . . . . . . . . . . . . . . . 711 20.12 Generative Stochastic Networks . . . . . . . . . . . . . . . . . . . 714 20.13 Other Generation Schemes . . . . . . . . . . . . . . . . . . . . . . 716 20.14 Evaluating Generative Models . . . . . . . . . . . . . . . . . . . . 717 20.15 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 720 Bibliography 721 Index 777 vi Website www.deeplearningbook.org This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors. vii Acknowledgments This book would not have been possible without the contributions of many people. We would like to thank those who commented on our proposal for the book and helped plan its contents and organization: Guillaume Alain, Kyunghyun Cho, Çağlar Gülçehre, David Krueger, Hugo Larochelle, Razvan Pascanu and Thomas Rohée. We would like to thank the people who offered feedback on the content of the book itself. Some offered feedback on many chapters: Martín Abadi, Guillaume Alain, Ion Androutsopoulos, Fred Bertsch, Olexa Bilaniuk, Ufuk Can Biçici, Matko Bošnjak, John Boersma, Greg Brockman, Alexandre de Brébisson, Pierre Luc Carrier, Sarath Chandar, Pawel Chilinski, Mark Daoust, Oleg Dashevskii, Laurent Dinh, Stephan Dreseitl, Jim Fan, Miao Fan, Meire Fortunato, Frédéric Francis, Nando de Freitas, Çağlar Gülçehre, Jurgen Van Gael, Javier Alonso García, Jonathan Hunt, Gopi Jeyaram, Chingiz Kabytayev, Lukasz Kaiser, Varun Kanade, Asifullah Khan, Akiel Khan, John King, Diederik P. Kingma, Yann LeCun, Rudolf Mathey, Matías Mattamala, Abhinav Maurya, Kevin Murphy, Oleg Mürk, Roman Novak, Augustus Q. Odena, Simon Pavlik, Karl Pichotta, Eddie Pierce, Kari Pulli, Roussel Rahman, Tapani Raiko, Anurag Ranjan, Johannes Roith, Mihaela Rosca, Halis Sak, César Salgado, Grigory Sapunov, Yoshinori Sasaki, Mike Schuster, Julian Serban, Nir Shabat, Ken Shirriff, Andre Simpelo, Scott Stanley, David Sussillo, Ilya Sutskever, Carles Gelada Sáez, Graham Taylor, Valentin Tolmer, Massimiliano Tomassoli, An Tran, Shubhendu Trivedi, Alexey Umnov, Vincent Vanhoucke, Marco Visentini-Scarzanella, Martin Vita, David Warde-Farley, Dustin Webb, Kelvin Xu, Wei Xue, Ke Yang, Li Yao, Zygmunt Zając and Ozan Çağlayan. We would also like to thank those who provided us with useful feedback on individual chapters: Notation: Zhang Yuanhang. • Chapter 1, Introduction: Yusuf Akgul, Sebastien Bratieres, Samira Ebrahimi, • viii CONTENTS Charlie Gorichanaz, Brendan Loudermilk, Eric Morris, Cosmin Pârvulescu and Alfredo Solano. Chapter 2, Linear Algebra: Amjad Almahairi, Nikola Banić, Kevin Bennett, • Philippe Castonguay, Oscar Chang, Eric Fosler-Lussier, Andrey Khalyavin, Sergey Oreshkov, István Petrás, Dennis Prangle, Thomas Rohée, Gitanjali Gulve Sehgal, Colby Toland, Alessandro Vitale and Bob Welland. Chapter 3, Probability and Information Theory: John Philip Anderson, Kai • Arulkumaran, Vincent Dumoulin, Rui Fa, Stephan Gouws, Artem Oboturov, Antti Rasmus, Alexey Surkov and Volker Tresp. Chapter 4, Numerical Computation: Tran Lam AnIan Fischer and Hu • Yuhuang. Chapter 5, Machine Learning Basics: Dzmitry Bahdanau, Justin Domingue, • Nikhil Garg, Makoto Otsuka, Bob Pepin, Philip Popien, Emmanuel Rayner, Peter Shepard, Kee-Bong Song, Zheng Sun and Andy Wu. Chapter 6, Deep Feedforward Networks: Uriel Berdugo, Fabrizio Bottarel, • Elizabeth Burl, Ishan Durugkar, Jeff Hlywa, Jong Wook Kim, David Krueger and Aditya Kumar Praharaj. Chapter 7, Regularization for Deep Learning: Morten Kolbæk, Kshitij Lauria, • Inkyu Lee, Sunil Mohan, Hai Phong Phan and Joshua Salisbury. Chapter 8, Optimization for Training Deep Models: Marcel Ackermann, Peter • Armitage, Rowel Atienza, Andrew Brock, Tegan Maharaj, James Martens, Kashif Rasul, Klaus Strobl and Nicholas Turner. Chapter 9, Convolutional Networks: Martín Arjovsky, Eugene Brevdo, Kon- • stantin Divilov, Eric Jensen, Mehdi Mirza, Alex Paino, Marjorie Sayer, Ryan Stout and Wentao Wu. Chapter 10, Sequence Modeling: Recurrent and Recursive Nets: Gökçen • Eraslan, Steven Hickson, Razvan Pascanu, Lorenzo von Ritter, Rui Rodrigues, Dmitriy Serdyuk, Dongyu Shi and Kaiyu Yang. Chapter 11, Practical Methodology: Daniel Beckstein. • Chapter 12, Applications: George Dahl, Vladimir Nekrasov and Ribana • Roscher. Chapter 13, Linear Factor Models: Jayanth Koushik. • ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.