ebook img

Decay Spectrum of $K^+ \to e^+ ν_{e}γ$ PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Decay Spectrum of $K^+ \to e^+ ν_{e}γ$

February 2, 2008 16:46 WSPC/INSTRUCTION FILE Lih-ICFP07 International JournalofModernPhysicsA (cid:13)c WorldScientificPublishingCompany 8 0 0 DECAY SPECTRUM OF K+ → e+νeγ 2 n a J C.H.CHEN1,C.Q.GENG2 andC.C.LIH3 7 1Department of Physics, National Cheng-Kung University,Tainan 701, Taiwan 2Department of Physics, National Tsing-HuaUniversity,Hsinchu 300, Taiwan ] 3General Education Center,Tzu-Chi College of Technology, Hualien 970, Taiwan h p - TheformfactorsoftheK+→γtransitionarestudiedinthelight-frontquarkmodeland p e chiral perturbation theory of O(p6). The decay spectrum of K+ → e+νeγ, dominated h bythestructuredependent contribution, isillustratedinbothmodels. [ 1 It is known that the decay of K+ e+ν γ receives two types of contributions: e v “inner bremsstrahlung” (IB) and “st→ructure-dependent” (SD) 1,2. The former is 4 7 helicity suppressed and contains the electromagnetic coupling constant α, while 0 the latter gives the dominant contribution to the decay rate as it is free of the 1 helicity suppression. In the standard model (SM), the decay amplitude of the SD . 1 partinvolves vectorand axial-vectorhadronic currents,which canbe parametrized 0 interms ofthe vectorformfactor F andaxial-vectorformfactorF ,respectively. 8 V A 0 However, the experimental determinations on these form factors are poorly given : andmodel-dependent3,4,5.Inparticular,theexperimentalresultsonthedecayrate v i ofK+ e+νeγinRef.3,4,5werebasedontheassumptionofFV andFAbeingsome X constan→tvaluesinthechiralperturbationtheory(ChPT)atO(p4)6.Intheongoing r a data analysisofthe E949experimentatBNL, moreprecisionmeasurementsonthe decay of K+ e+ν γ are expected 7 andthus, the model-independent extractions e → of the SD form factors are possible. Theoretical calculations of F and F in the V A K+ γ transition have been previously done in the ChPT at O(p4) 6 and O(p6) 8,9 a→s ell as the light-frontquark model (LFQM) 10. However,the results have not been fully applied to the decay of K+ e+ν γ yet. e → 11 In this talk, we will present our recent results on the transition form factors of K+ γ in the ChPT of O(p6) and light-front quark model (LFQM). We will → show the spectrum of the differential decay branching ratio of K+ e+ν γ as a e → function of x=2E /m . γ K WestartwiththeamplitudeofthedecayK+ e+ν γintheSM,givenby2,6,12 e → M = M +M , IB SD G G M = ie Fsinθ F m ǫ∗Kα, M = ie Fsinθ ǫ∗L Hµν, (1) IB √2 c K e α SD − √2 c µ ν where Kα = u¯(p )(1 + γ ) pαK 2pαe+q6γα v(p ), L = u¯(p )γ (1 γ )v(p ), ν 5 pK·q − 2pe·q e ν ν ν − 5 e (cid:16) (cid:17) 1 February 2, 2008 16:46 WSPC/INSTRUCTION FILE Lih-ICFP07 2 Chen, Geng and Lih Hµν = FA ( gµνp q+pµqν)+iFV ǫµναβq p ǫ is the photon polarization mK − K · K mK α Kβ α vector, p , p , p , and q are the four-momenta of K+, ν , e+, and γ, and F and K ν e e K F are the K meson decay constant and the axial-vector (vector) form factor A(V) corresponding to the axial-vector (vector) part of the weak currents, respectively, defined by F 0s¯γµγ uK+(p ) = iF pµ, γ(q)u¯γµsK(p ) =ie V εµαβνǫ q p , h | 5 | K i − K K h | | K i m ∗α β ν K F γ(q)u¯γµγ sK(p ) =e A [(p q)ǫ∗µ (ǫ∗ p)qµ], (2) 5 K h | | i m · − · K with p = p q being the transfer momentum. We note that in Eq. (1) K IB − M is suppressed due to the small electron mass m . In the decay of K+ e+ν γ, e e → the form factors F in Eq. (2) are the analytic functions of p2 = (p q)2 in A,V K − the physical allowed region of m2 p2 m2 . The relation between the transfer e ≤ ≤ K momentum p2 and x is given by p2 =m2 (1 x). At O(p6) in the ChPT, one obtains tKhat−11 m 256 64 F (p2)= K 1 π2m2 Cr+256π2(m2 m2)Cr + π2p2Cr V 4√2π2F − 3 K 7 K − π 11 3 22 K(cid:26) 1 3 m2 7 m2 m2 m2ln η + m2 ln π +3m2 ln K −16π2(√2FK)2(cid:20)2 η µ2 ! 2 π (cid:18)µ2 (cid:19) K (cid:18) µ2 (cid:19) xm2 +(1 x)m2 x(1 x)p2 2 xm2 +(1 x)m2 x(1 x)p2 ln π − K − − dx − π − K − − µ2 Z (cid:18) (cid:19) (cid:2) (cid:3) xm2 +(1 x)m2 x(1 x)p2 2 xm2 +(1 x)m2 x(1 x)p2 ln η − K − − dx − η − K − − µ2 ! Z (cid:2) (cid:3) m2 4 m2 ln π dx , (3) − π µ2 Z (cid:18) (cid:19) (cid:21)(cid:27) 4√2m m F (p2)= K(Lr+Lr )+ K [142.65(m2 p2) 198.3] A F 9 10 6F3(2π)8 K − − K K m m2 m2 K (4Lr+7Lr+7Lr )m2 ln π +3(Lr+Lr )m2ln η −4√2FK3π2 ( 3 9 10 π (cid:18)m2ρ(cid:19) 9 10 η m2ρ! m2 +2(8Lr 4Lr+4Lr+7Lr+7Lr )m2 ln K 1− 2 3 9 10 K m2 (cid:18) ρ (cid:19)(cid:27) 4√2m K 2m2(18yr 2yr 6yr +2yr +3yr yr +6yr ) − 3F3 π 18− 81− 82 83 84− 85 103 K +2m2 (18(cid:8)yr +36yr 4yr 12yr +4yr +6yr +4yr 3yr K 17 18− 81− 82 83 84 85− 100 3 +6yr +12yr 6yr +3yr )+ (m2 p2)(2yr 4yr +yr ) , (4) 102 103− 104 109 2 K − 100− 109 110 (cid:27) where Cr, Lr and yr are the renormalized coupling constants. Note that the first i i i terms in Eqs. (3) and (4) correspond to F and F at O(p4) 6, respectively. V A February 2, 2008 16:46 WSPC/INSTRUCTION FILE Lih-ICFP07 Decay Spectrum of K+→e+νeγ 3 10 11 In the framework of the LFQM , we obtain dzd2k 1 2m Ak2Θ 1m +Bk2Θ F (p2)= 4m ⊥Φ z′,k2 u− ⊥ + s ⊥ , A K 2(2π)3 ⊥ 1 z′ 3 m2 +k2 3 m2+k2 Z − (cid:26) u ⊥ s ⊥ (cid:27) dzd2k (cid:0) (cid:1) 1 F (p2)= 8m ⊥Φ z′,k2 V K 2(2π)3 ⊥ 1 z′ Z − 2m z′(m (cid:0)m )k2(cid:1)Θ 1m +(1 z′)(m m )k2Θ u− s− u ⊥ s − s− u ⊥ , (5) 3 m2 +k2 − 3 m2+k2 (cid:26) u ⊥ s ⊥ (cid:27) 11 where the parameters and variables are defined in Ref. . The numerical values of F (p2) in the ChPT of O(p6) are plotted in Fig. 1. A,V Inthesefigures,wehavealsoincludedthe results inthe ChPTatO(p4).Explicitly, we find that F (p2 = 0) = 0.0945 (0.0425), 0.082 (0.034) and 0.106 (0.036) in V(A) the ChPT at O(p4), ChPT at O(p4) and LFQM, respectively. The differential decay rate as a function of x is given by dΓ m5 = K αG2 sin2θ A(x) (6) dx 64π2 F c 11 where the function of A(x) is given in Ref. . By integrating out the variable x in Eq. (6), in Table 1 we give the decay branching ratio of K+ e+ν γ. Here, as e → the IB term diverges at the limit of x 0 corresponding to p2 p2 = m2 , we → → max K have used the cuts of x = 0.01 and 0.1, respectively. With the cuts, from Table 1 we see that the IB contributions are much smaller than the SD± ones, which are insensitivetothecut.InFig.2,wealsodisplaythespectrumofthedifferentialdecay branching ratio in the ChPT at both O(p4) and O(p6) and the LFQM. From Fig. 2,we see that in the regionof x<0.7 or E <173 MeV, the decay branchingratio γ in the LFQMis much samllerthan that in the ChPT atO(p6). On the other hand, in the region of x > 0.7 the statement is reversed. However, if we only consider the contributions in the ChPT at O(p4), the conclusion is weaker. It is clear in 7 the future data analysis such as the one at the experiment BNL-E949 , one could concentrate on these two regions to find out which model is preferred. We have studied the axial-vector and vector form factors of the K+ γ tran- → sition in the LFQM and ChPT of O(p6). Based on these form factors, we have Fig.1. FV,A(p2)asfunctions ofthetransfermomentump2. February 2, 2008 16:46 WSPC/INSTRUCTION FILE Lih-ICFP07 4 Chen, Geng and Lih Table1. ThedecaybranchingratioofK+→e+νeγ (inunitsof10−5). Model xCut IB SD+ SD− Total ChPTatO(p4) 0.01 1.65×10−1 1.34 1.93×10−1 1.70 0.1 0.69×10−1 1.34 1.93×10−1 1.60 ChPTatO(p6) 0.01 1.65×10−1 1.15 2.58×10−1 1.57 0.1 0.69×10−1 1.15 2.58×10−1 1.47 LFQM 0.01 1.65×10−1 1.12 2.59×10−1 1.54 0.1 0.69×10−1 1.12 2.59×10−1 1.44 calculated the decay branching ratio of K+ e+ν γ. We have demonstrated that e → the SD parts give the dominant contributions to the decay in the whole allowed regionofthephotonenergyexceptthe lowendpoint.Future precisionexperimental 7 measurements on the decay spectrum should give us some useful information to determine the SD contributions as well as the vector and axial-vectorform factors. References 1. J.T. Goldman and W.J. Wilson, Phys.Rev. D15, 709 (1977). 2. D.A.Bryman et al.,Phys. Rep.88, 151 (1982). 3. K.S.Heard et al.,Phys. Lett.B55, 324 (1975). 4. J. Heintzeet al.,Nucl.Phys. B149, 365 (1979). 5. S.Adler et al.[E787 Collaboration], Phys.Rev. Lett. 85, 2256 (2000). 6. J. Bijnens, G.Ecker, and J. Gasser, Nucl. Phys. B 396, 81 (1993). 7. D.A. Bryman, privatecommunications. 8. L.Ametller, J. Bijnens, A. Braman and F. Cornet, Phys. Lett.B303, 140 (1993). 9. C.Q. Geng, I.L. Ho and T.H. Wu,Nucl.Phys. B684, 281 (2004). 10. C.Q. Geng, C.C. Lih and W.M. Zhang, Phys. Rev. D57, 5697 (1998); ibid. D59, 114002 (1999); ibid. D62, 074017 (2000); Mod. Phys. Lett. A15, 2087 (2000); C.Q. Geng, C.C. Lih and C.C. Liu, Phys. Rev. D62, 034019 (2000). 11. C.H.Chen,C.Q.GengandC.C.Lih,Phys.Rev.D77,014004(2008),arXiv:0710.2971 [hep-ph]. 12. C.Q. Geng and S.K. Lee, Phys. Rev. D51, 99 (1995); C.H. Chen, C.Q. Geng and C.C. Lih, ibid. D56, 6856 (1997). 40 4 ChPT O(p) 35 ChPT O(p6) ) / dx 30 LFQM e 25 610 d Br ( K 112050 5 0 0.0 0.2 0.4 0.6 0.8 1.0 x (2E / mK) Fig.2. Thedifferentialdecay branchingratioasafunctionofx=2Eγ/mK.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.