ebook img

Data Mining_ The Textbook [Aggarwal 2015-04-14].. PDF

746 Pages·2015·16.43 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data Mining_ The Textbook [Aggarwal 2015-04-14]..

Data Mining: The Textbook Charu C. Aggarwal Data Mining The Textbook Charu C. Aggarwal IBM T.J. Watson Research Center Yorktown Heights New York USA A solution manual for thisbook is available on Springer.com. ISBN 978-3-319-14141-1 ISBN 978-3-319-14142-8 (eBook) DOI 10.1007/978-3-319-14142-8 LibraryofCongressControlNumber:2015930833 SpringerChamHeidelbergNewYorkDordrechtLondon (cid:2)c SpringerInternational PublishingSwitzerland2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of thematerialisconcerned, specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology nowknownorhereafterdeveloped. Theuseofgeneral descriptivenames,registerednames,trademarks,servicemarks,etc. inthispublication does notimply,even inthe absenceofaspecificstatement, that suchnames areexempt fromtherelevant protective lawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editors giveawarranty, express orimplied,withrespecttothematerialcontained hereinorforanyerrors oromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerispartofSpringerScience+Business Media(www.springer.com) To my wife Lata, and my daughter Sayani v Contents 1 An Introduction to Data Mining 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Data Mining Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 The Data Preprocessing Phase . . . . . . . . . . . . . . . . . . . . 5 1.2.2 The Analytical Phase . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 The Basic Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Nondependency-Oriented Data. . . . . . . . . . . . . . . . . . . . 7 1.3.1.1 Quantitative Multidimensional Data. . . . . . . . . . . 7 1.3.1.2 Categorical and Mixed Attribute Data . . . . . . . . . 8 1.3.1.3 Binary and Set Data . . . . . . . . . . . . . . . . . . . 8 1.3.1.4 Text Data . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Dependency-Oriented Data . . . . . . . . . . . . . . . . . . . . . . 9 1.3.2.1 Time-Series Data . . . . . . . . . . . . . . . . . . . . . 9 1.3.2.2 Discrete Sequences and Strings . . . . . . . . . . . . . . 10 1.3.2.3 Spatial Data . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.2.4 Network and Graph Data . . . . . . . . . . . . . . . . . 12 1.4 The Major Building Blocks: A Bird’s Eye View . . . . . . . . . . . . . . . 14 1.4.1 Association Pattern Mining . . . . . . . . . . . . . . . . . . . . . 15 1.4.2 Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.3 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.4 Data Classification . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.5 Impact of Complex Data Types on Problem Definitions . . . . . . 19 1.4.5.1 Pattern Mining with Complex Data Types . . . . . . . 20 1.4.5.2 Clustering with Complex Data Types . . . . . . . . . . 20 1.4.5.3 Outlier Detection with Complex Data Types . . . . . . 21 1.4.5.4 Classification with Complex Data Types . . . . . . . . 21 1.5 Scalability Issues and the Streaming Scenario . . . . . . . . . . . . . . . . 21 1.6 A Stroll Through Some Application Scenarios . . . . . . . . . . . . . . . . 22 1.6.1 Store Product Placement . . . . . . . . . . . . . . . . . . . . . . . 22 1.6.2 Customer Recommendations . . . . . . . . . . . . . . . . . . . . . 23 1.6.3 Medical Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.6.4 Web Log Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 vii viii CONTENTS 1.8 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 Data Preparation 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Feature Extraction and Portability . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.2 Data Type Portability . . . . . . . . . . . . . . . . . . . . . . . . 30 2.2.2.1 Numeric to Categorical Data: Discretization . . . . . . 30 2.2.2.2 Categorical to Numeric Data: Binarization . . . . . . . 31 2.2.2.3 Text to Numeric Data. . . . . . . . . . . . . . . . . . . 31 2.2.2.4 Time Series to Discrete Sequence Data . . . . . . . . . 32 2.2.2.5 Time Series to Numeric Data. . . . . . . . . . . . . . . 32 2.2.2.6 Discrete Sequence to Numeric Data . . . . . . . . . . . 33 2.2.2.7 Spatial to Numeric Data . . . . . . . . . . . . . . . . . 33 2.2.2.8 Graphs to Numeric Data . . . . . . . . . . . . . . . . . 33 2.2.2.9 Any Type to Graphs for Similarity-Based Applications 33 2.3 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.3.1 Handling Missing Entries . . . . . . . . . . . . . . . . . . . . . . . 35 2.3.2 Handling Incorrect and Inconsistent Entries . . . . . . . . . . . . 36 2.3.3 Scaling and Normalization . . . . . . . . . . . . . . . . . . . . . . 37 2.4 Data Reduction and Transformation . . . . . . . . . . . . . . . . . . . . . 37 2.4.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.1.1 Sampling for Static Data . . . . . . . . . . . . . . . . . 38 2.4.1.2 Reservoir Sampling for Data Streams . . . . . . . . . . 39 2.4.2 Feature Subset Selection . . . . . . . . . . . . . . . . . . . . . . . 40 2.4.3 Dimensionality Reduction with Axis Rotation . . . . . . . . . . . 41 2.4.3.1 Principal Component Analysis . . . . . . . . . . . . . . 42 2.4.3.2 Singular Value Decomposition . . . . . . . . . . . . . . 44 2.4.3.3 Latent Semantic Analysis . . . . . . . . . . . . . . . . . 47 2.4.3.4 Applications of PCA and SVD . . . . . . . . . . . . . . 48 2.4.4 Dimensionality Reduction with Type Transformation . . . . . . . 49 2.4.4.1 Haar Wavelet Transform . . . . . . . . . . . . . . . . . 50 2.4.4.2 Multidimensional Scaling . . . . . . . . . . . . . . . . . 55 2.4.4.3 Spectral Transformation and Embedding of Graphs . . 57 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3 Similarity and Distances 63 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 Multidimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Quantitative Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1.1 Impact of Domain-Specific Relevance . . . . . . . . . . 65 3.2.1.2 Impact of High Dimensionality . . . . . . . . . . . . . . 65 3.2.1.3 Impact of Locally Irrelevant Features . . . . . . . . . . 66 3.2.1.4 Impact of Different L -Norms . . . . . . . . . . . . . . 67 p 3.2.1.5 Match-Based Similarity Computation . . . . . . . . . . 68 3.2.1.6 Impact of Data Distribution . . . . . . . . . . . . . . . 69 CONTENTS ix 3.2.1.7 Nonlinear Distributions: ISOMAP . . . . . . . . . . . . 70 3.2.1.8 Impact of Local Data Distribution . . . . . . . . . . . . 72 3.2.1.9 Computational Considerations . . . . . . . . . . . . . . 73 3.2.2 Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.3 Mixed Quantitative and Categorical Data . . . . . . . . . . . . . 75 3.3 Text Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3.1 Binary and Set Data . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Temporal Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4.1 Time-Series Similarity Measures . . . . . . . . . . . . . . . . . . . 77 3.4.1.1 Impact of Behavioral Attribute Normalization . . . . . 78 3.4.1.2 L -Norm . . . . . . . . . . . . . . . . . . . . . . . . . . 79 p 3.4.1.3 Dynamic Time Warping Distance . . . . . . . . . . . . 79 3.4.1.4 Window-Based Methods . . . . . . . . . . . . . . . . . 82 3.4.2 Discrete Sequence Similarity Measures . . . . . . . . . . . . . . . 82 3.4.2.1 Edit Distance . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.2.2 Longest Common Subsequence . . . . . . . . . . . . . . 84 3.5 Graph Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.1 Similarity between Two Nodes in a Single Graph . . . . . . . . . 85 3.5.1.1 Structural Distance-Based Measure . . . . . . . . . . . 85 3.5.1.2 Random Walk-Based Similarity . . . . . . . . . . . . . 86 3.5.2 Similarity Between Two Graphs . . . . . . . . . . . . . . . . . . . 86 3.6 Supervised Similarity Functions . . . . . . . . . . . . . . . . . . . . . . . . 87 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.8 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Association Pattern Mining 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 The Frequent Pattern Mining Model . . . . . . . . . . . . . . . . . . . . . 94 4.3 Association Rule Generation Framework . . . . . . . . . . . . . . . . . . . 97 4.4 Frequent Itemset Mining Algorithms . . . . . . . . . . . . . . . . . . . . . 99 4.4.1 Brute Force Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4.2 The Apriori Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4.2.1 Efficient Support Counting . . . . . . . . . . . . . . . . 102 4.4.3 Enumeration-Tree Algorithms . . . . . . . . . . . . . . . . . . . . 103 4.4.3.1 Enumeration-Tree-Based Interpretation of Apriori . . . 105 4.4.3.2 TreeProjection and DepthProject . . . . . . . . . . . . 106 4.4.3.3 Vertical Counting Methods . . . . . . . . . . . . . . . . 110 4.4.4 Recursive Suffix-Based Pattern Growth Methods. . . . . . . . . . 112 4.4.4.1 Implementation with Arrays but No Pointers . . . . . . 114 4.4.4.2 Implementation with Pointers but No FP-Tree . . . . . 114 4.4.4.3 Implementation with Pointers and FP-Tree . . . . . . . 116 4.4.4.4 Trade-offs with Different Data Structures . . . . . . . . 118 4.4.4.5 Relationship Between FP-Growth and Enumeration- Tree Methods . . . . . . . . . . . . . . . . . . . . . . . 119 4.5 Alternative Models: Interesting Patterns . . . . . . . . . . . . . . . . . . . 122 4.5.1 Statistical Coefficient of Correlation . . . . . . . . . . . . . . . . . 123 4.5.2 χ2 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.5.3 Interest Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 x CONTENTS 4.5.4 Symmetric Confidence Measures . . . . . . . . . . . . . . . . . . . 124 4.5.5 Cosine Coefficient on Columns . . . . . . . . . . . . . . . . . . . . 125 4.5.6 Jaccard Coefficient and the Min-hash Trick . . . . . . . . . . . . . 125 4.5.7 Collective Strength . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.5.8 Relationship to Negative Pattern Mining . . . . . . . . . . . . . . 127 4.6 Useful Meta-algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.6.1 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.6.2 Data Partitioned Ensembles . . . . . . . . . . . . . . . . . . . . . 128 4.6.3 Generalization to Other Data Types . . . . . . . . . . . . . . . . 129 4.6.3.1 Quantitative Data . . . . . . . . . . . . . . . . . . . . . 129 4.6.3.2 Categorical Data . . . . . . . . . . . . . . . . . . . . . 129 4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.8 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 5 Association Pattern Mining: Advanced Concepts 135 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5.2 Pattern Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.1 Maximal Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.2 Closed Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2.3 Approximate Frequent Patterns . . . . . . . . . . . . . . . . . . . 139 5.2.3.1 Approximation in Terms of Transactions . . . . . . . . 139 5.2.3.2 Approximation in Terms of Itemsets . . . . . . . . . . . 140 5.3 Pattern Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3.1 Preprocess-once Query-many Paradigm . . . . . . . . . . . . . . . 141 5.3.1.1 Leveraging the Itemset Lattice . . . . . . . . . . . . . . 142 5.3.1.2 Leveraging Data Structures for Querying . . . . . . . . 143 5.3.2 Pushing Constraints into Pattern Mining . . . . . . . . . . . . . . 146 5.4 Putting Associations to Work: Applications . . . . . . . . . . . . . . . . . 147 5.4.1 Relationship to Other Data Mining Problems . . . . . . . . . . . 147 5.4.1.1 Application to Classification . . . . . . . . . . . . . . . 147 5.4.1.2 Application to Clustering . . . . . . . . . . . . . . . . . 148 5.4.1.3 Applications to Outlier Detection . . . . . . . . . . . . 148 5.4.2 Market Basket Analysis. . . . . . . . . . . . . . . . . . . . . . . . 148 5.4.3 Demographic and Profile Analysis . . . . . . . . . . . . . . . . . . 148 5.4.4 Recommendations and Collaborative Filtering . . . . . . . . . . . 149 5.4.5 Web Log Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.4.6 Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.4.7 Other Applications for Complex Data Types . . . . . . . . . . . . 150 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 5.6 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6 Cluster Analysis 153 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2 Feature Selection for Clustering . . . . . . . . . . . . . . . . . . . . . . . . 154 6.2.1 Filter Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.1.1 Term Strength . . . . . . . . . . . . . . . . . . . . . . . 155 6.2.1.2 Predictive Attribute Dependence . . . . . . . . . . . . 155 CONTENTS xi 6.2.1.3 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2.1.4 Hopkins Statistic . . . . . . . . . . . . . . . . . . . . . 157 6.2.2 Wrapper Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3 Representative-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . 159 6.3.1 The k-Means Algorithm . . . . . . . . . . . . . . . . . . . . . . . 162 6.3.2 The Kernel k-Means Algorithm . . . . . . . . . . . . . . . . . . . 163 6.3.3 The k-Medians Algorithm . . . . . . . . . . . . . . . . . . . . . . 164 6.3.4 The k-Medoids Algorithm . . . . . . . . . . . . . . . . . . . . . . 164 6.4 Hierarchical Clustering Algorithms . . . . . . . . . . . . . . . . . . . . . . 166 6.4.1 Bottom-Up Agglomerative Methods . . . . . . . . . . . . . . . . . 167 6.4.1.1 Group-Based Statistics . . . . . . . . . . . . . . . . . . 169 6.4.2 Top-Down Divisive Methods . . . . . . . . . . . . . . . . . . . . . 172 6.4.2.1 Bisecting k-Means . . . . . . . . . . . . . . . . . . . . . 173 6.5 Probabilistic Model-Based Algorithms . . . . . . . . . . . . . . . . . . . . 173 6.5.1 Relationship of EM to k-means and Other Representative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 6.6 Grid-Based and Density-Based Algorithms . . . . . . . . . . . . . . . . . . 178 6.6.1 Grid-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 179 6.6.2 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.6.3 DENCLUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 6.7 Graph-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.7.1 Properties of Graph-Based Algorithms . . . . . . . . . . . . . . . 189 6.8 Non-negative Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . 191 6.8.1 Comparison with Singular Value Decomposition . . . . . . . . . . 194 6.9 Cluster Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.9.1 Internal Validation Criteria. . . . . . . . . . . . . . . . . . . . . . 196 6.9.1.1 Parameter Tuning with Internal Measures . . . . . . . 198 6.9.2 External Validation Criteria . . . . . . . . . . . . . . . . . . . . . 198 6.9.3 General Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.11 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 7 Cluster Analysis: Advanced Concepts 205 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 7.2 Clustering Categorical Data . . . . . . . . . . . . . . . . . . . . . . . . . . 206 7.2.1 Representative-Based Algorithms . . . . . . . . . . . . . . . . . . 207 7.2.1.1 k-Modes Clustering . . . . . . . . . . . . . . . . . . . . 208 7.2.1.2 k-Medoids Clustering . . . . . . . . . . . . . . . . . . . 209 7.2.2 Hierarchical Algorithms. . . . . . . . . . . . . . . . . . . . . . . . 209 7.2.2.1 ROCK . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 7.2.3 Probabilistic Algorithms . . . . . . . . . . . . . . . . . . . . . . . 211 7.2.4 Graph-Based Algorithms . . . . . . . . . . . . . . . . . . . . . . . 212 7.3 Scalable Data Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 7.3.1 CLARANS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 7.3.2 BIRCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 7.3.3 CURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7.4 High-Dimensional Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 217 7.4.1 CLIQUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.4.2 PROCLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Description:
Applications to Other Data Mining Problems . 233 Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.