ebook img

Data fusion techniques for object space classification using airborne laser data and airborne digital photographs PDF

168 Pages·2002·7.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Data fusion techniques for object space classification using airborne laser data and airborne digital photographs

DATAFUSIONTECHNIQUESFOROBJECTSPACECLASSIFICATION USINGAIRBORNELASERDATA ANDAIRBORNEDIGITALPHOTOGRAPHS By JOONGYONGPARK ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2002 Copyright2002 by JOONGYONGPARK Tomywife,SunghwaYoun, Mylovelydaughter,Shinhwo, Andmyparents,ByungJoParkandSoonJaLee ACKNOWLEDGMENTS Iwouldliketoexpressmygratitudetomysupervisor,ProfessorGradyTuell,forhis continuoussupport,encouragement,andguidancethroughoutmystudies.Heintroduced metotheworldofdatafusion,whichIhadneverbeenthoughtbefore.Healwayshelps metosolveproblemsandencouragesgoingtoahigheracademiclevel.Heisagreat teacherformeacademicallyandspiritually.IamsoproudtobehisfirstPh.D.student. IwishtothankProfessorRameshShresthaandWilliamCarter,whoalsogaveme continuoussupportandespeciallyfortheirpositiveinfluenceforyearstocome.They introducedmetotheentranceofLIDAR.Theymaintainaworldclassresearchteamof airbornelasermappingtechnology,whichtheygavemeachancetobeinvolvedin. Ialsowishtothankmyothercommitteemembers.ProfessorDavidBloomquistand PaulZwick,fortheircomments.Ialsowishtoexpressthankstomypastandpresent colleaguesintheresearchgroup. IV TABLEOFCONTENTS gage ACKNOWLEDGMENTS iv LISTOFTABLES viii LISTOFFIGURES x ABSTRACT xiii CHAPTER 1 INTRODUCTION 1 ObjectiveofResearch 4 DataFusion 5 AnObjectRecognitionExample 7 PotentialAdvantagesinIntegratingMultipleSensors 9 TheMethodsofDataFusion 9 Signal-LevelMethods 10 Pixel-LevelMethods 11 Feature-LevelMethods 12 Decision-LevelMethods 14 DataAcquisition 17 Outline 19 2 CLASSIFICATIONUSINGASUPERVISEDSTATISTICALPATTERN RECOGNITIONTECHNIQUE 22 DataFusionofDigitalColorImagery,ALSMIntensity,andDEM 22 Methodology 25 AnalysisandResults 25 Discussion 37 Summary 42 3 CLASSIFICATIONUSINGANEXPERTSYSTEMAPPROACH 44 Rule-basedClassification 44 AnalysisofStudyArea 47 V 1 Methods 49 Results 58 Discussion 62 Summary 62 4 CLASSIFICATIONUSINGTHEDEMPSTER-SHAFEREVIDENTIALTHEORY64 TheDempster-ShaferEvidentialTheory 64 TheConceptofEvidentialReasoning 65 Dempster’sRuleofCombination 68 Experiment 71 PriorProbabilityfromtheMaximumLikelihoodDecisionRule 71 DataFusionProcessingUsingtheDempster-ShaferEvidentialTheory 72 Results 80 Summary 8 5 CONCLUSIONS 84 6 DISCUSSIONANDRECOMMENDATIONFORFURTHERWORK 90 APEENDD( A DESCRIPTIONOFTHEDATAACQUISITIONSYSTEM 93 SystemComponents 93 AirborneLaserSwathMappingSystem 93 AirborneDigitalPhotographyImagingSystem 97 B DIRECTDIGITALIMAGEGEOREFERENCING 99 AirborneGPSPositioningandGeoreferencing 99 GeoreferencingofImageSensors 103 DirectGeoreferencingMethod 103 PrinciplesofDirectImageGeoreferencing 105 PositionalOffsetandMisalignmentAngleCalibration 107 TimeAlignment 112 AngleAnalysisforBack-Projection 112 CalibrationofMisalignmentAngle 116 StudyAreaandDataAcquisition 119 Results 120 Discussion 123 C SPECIFICSOFINTENSITYDATAFROMALSMSYSTEM 124 VI IntensityofReflectedLaserPulse 124 CorrelationBetweenALSMIntensityandTargetReflectance 126 D GAUSSIANMAXIMUMLIKELIHOODCLASSIFICATION 130 E TECHNIQUEFORASSESSINGTHEACCURACYOFCLASSIFICATIONS 135 SampleDesign 135 SampleUnit 135 SampleSize 136 SamplingSelection 136 EvaluationofErrorMatrices 138 KappaAnalysis 140 LISTOFREFERENCES 142 BIOGRAPHICALSKETCH 151 vii 1- 2- LISTOFTABLES Table page 1.LaserSystemParameters 17 1.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRGB Image(Pixels) 27 2-2.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganHIImage (Pixels) 28 2-3.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRGI Combination(Pixels) 30 2-4.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRGH Combination(Pixels) 31 2- 2-5.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRHI 3- Combination(Pixels) 33 2-6.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRGHI Combination(Pixels) 34 2-7.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRBHI Combination(Pixels) 35 2-8.ConfusionMatrixBetweenClassifiedDataandReferenceDataUsinganRGBHI Combination(Pixels) 36 2-9.OverallAccuracyofEightBandCombinations(%) 38 10.StatisticsSummaryoftheMaximumLikelihoodClassificationfortheRGBHI BandCombination 38 1.Level-1ClassificationSchemeUsedinanRGBImageandanHIImage 52 3-2.RulesofLevel-1ClassificationfortheHIImage 53 3-3.RulesofLevel-1ClassificationforDigitalColorImage 54 3-4.Level-2ClassificationSchemeafterDataFusionUsingProductionRules 55 viii 33--5.Level-2ProductionRulesforDataFusionofALSMandADPLevel-1Classification 4- Data 55 6.ConfusionMatrixofRule-basedClassification(Pixels) 61 1.Dempster’sCombiningRule[fromThomopoulos(1990)] 69 4-2.TheCorrelationBetweenDataandInformationofClassesforanRGBDigitalColor Image 73 4-3.SummaryoftheMaximumLikelihoodClassificationforanRGBImage 73 44--4.TheCorrelationBetweenDataandInformationofClassesforanHIImage 76 45--5.StatisticsSummaryoftheMaximumLikelihoodClassificationforanHIImage 76 4-6.Dempster’sCombinationRuleofanRGBImageandanHIImage 78 4-7.TheMassAssignmentbyDempster’sCombinationRulefromtheALSMandADP Data 79 8.ConfusionMatrixofDataFusionClassificationbyDempster-ShaferEvidential Theory(Pixels) 82 1.TheComparisonofEachClassandOverallAccuracyamongThreeDataFusion Techniques(%) 87 A-1.SpecificationsoftheOptechModelALTM1210 96 B-1.PositionalOffsetsBetweenSensorstoIMULeverArm 110 B-2.PositionalOffsetsBetweenSensorstoGPSLeverArm 110 B-3.TheOffsetBetweenSensorsandIMUMisalignment 118 B-4.OffsetBetweenGPSDataandCalculationafterApplyingSubsystemParameters119 B-5.TheComparisonBetweenGPSGroundSurveyDataandtheSamePointsonthe Pseudo-orthorectifiedImage 123 C-1.ClassificationofALSMDataGroup 127 E-1.TheSamplePolygoninEachClass 139 E-2.ExampleErrorMatrix 141 ix LISTOFFIGURES Figure page I-l.Generalarchitectureofthedatafusionprocessinimageclassification 6 11--2.Thediscriminationoffourdifferentobjectsusingcomplementaryinformationfrom 2- twosensors 8 1-3.Data-,feature-,anddecision-levelfusion 13 1-4.TheintensityimagefromtheALSMdata 18 1-5.TheelevationimagefromtheALSMdata 18 6.DigitalcolorimagefromADPsystemfromtheALSM 19 1.Feature-leveldatafusion 23 2-2.Six-trialbandcombinationfromanRGBimageandanHIimage 24 2-3.Bandcombinationimages:(a)RGI(red,greenandintensity);(b)RHI(red,height, andintensity)combinations 24 2-4.GroundtruthreferencedataonanRGBcolorimage 26 2-5.Maximumlikelihoodclassification:(a)RGB(red,green,andblue);(b)HI(height andintensity)bandcombinations 29 2-6.Maximumlikelihoodclassification:(a)RGI(red,green,andintensity);(b)RGH (red,green,andheight)bandcombinations 32 2-7.Maximumlikelihoodclassification:(a)RHI(red,heightandintensity;(b)RGHI (red,green,height,andintensity)bandcombinations 35 2-8.Maximumlikelihoodclassification:(a)RBHI(red,blue,heightandintensity);(b) RGBHI(red,green,blue,height,andintensity)bandcombinations 37 2-9.Diagramofnormaldistributionofeightclassesonaredband 39 2-10.Diagramofnormaldistributionofeightclassesonagreenband 39 2-11.Diagramofnormaldistributionofeightclassesonablueband 40 X

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.