ebook img

Convex and Stochastic Optimization PDF

320 Pages·2019·3.808 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Convex and Stochastic Optimization

Universitext J. Frédéric Bonnans Convex and Stochastic Optimization Universitext Universitext Series Editors Sheldon Axler San Francisco State University Carles Casacuberta Universitat de Barcelona Angus MacIntyre Queen Mary University of London Kenneth Ribet University of California, Berkeley Claude Sabbah École Polytechnique, CNRS, Université Paris-Saclay, Palaiseau Endre Süli University of Oxford Wojbor A. Woyczyński, Case Western Reserve University Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal even experimental approachtotheirsubjectmatter.Someofthemostsuccessfulandestablishedbooks intheserieshaveevolvedthroughseveraleditions,alwaysfollowingtheevolution of teaching curricula, to very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext. More information about this series at http://www.springer.com/series/223 é é J. Fr d ric Bonnans Convex and Stochastic Optimization 123 J.Frédéric Bonnans Inria-Saclay and CentredeMathématiquesAppliquées ÉcolePolytechnique Palaiseau, France ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN978-3-030-14976-5 ISBN978-3-030-14977-2 (eBook) https://doi.org/10.1007/978-3-030-14977-2 LibraryofCongressControlNumber:2019933717 MathematicsSubjectClassification(2010): 90C15,09C25,90C39,90C40,90C46 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland This book is dedicated to Viviane, Juliette, Antoine, and Na Yeong Preface These lecture notes are an extension of those given in the master programs at the Universities Paris VI and Paris-Saclay, and in the École Polytechnique. They give an introduction to convex analysis and its applications to stochastic programming, i.e., to optimization problems where the decision must be taken in the presence of uncertainties. This is an active subject of research that covers many applications. ClassicaltextbooksareBirgeandLouveaux[21],KallandWallace[62].Thebook [123] by Wallace and Ziemba is dedicated to applications. Some more advanced material is presented in Ruszczynski and Shapiro [105], Shapiro et al. [113], Föllmer and Schied [49], and Carpentier et al. [32]. Let us also mention the his- torical review paper by Wets [124]. Thebasictoolforstudyingsuchproblemsisthecombinationofconvexanalysis with measure theory. Classical sources in convex analysis are Rockafellar [96], Ekeland and Temam [46]. An introduction to integration and probability theory is given in Malliavin [76]. The author expresses his thanks to Alexander Shapiro (Georgia Tech) for introducinghimtothesubject,DarinkaDentchev(StevensInstituteofTechnology), AndrzejRuszczyńki(Rutgers),MicheldeLara,andJean-PhilippeChancelier(Ecole desPonts-ParisTech)forstimulatingdiscussions,andPierreCarpentierwithwhom he shared the course on stochastic optimization in the optimization masters at the Université Paris-Saclay. Palaiseau, France J. Frédéric Bonnans vii Contents 1 A Convex Optimization Toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Convex Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Separation of Convex Sets . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Weak Duality and Saddle Points. . . . . . . . . . . . . . . . . . . . 10 1.1.4 Linear Programming and Hoffman Bounds . . . . . . . . . . . . 11 1.1.5 Conjugacy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.2 Duality Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.1 Perturbation Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.2.2 Subdifferential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.2.3 Minimax Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.2.4 Calmness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.3 Specific Structures, Applications . . . . . . . . . . . . . . . . . . . . . . . . . 53 1.3.1 Maxima of Bounded Functions. . . . . . . . . . . . . . . . . . . . . 53 1.3.2 Linear Conical Optimization. . . . . . . . . . . . . . . . . . . . . . . 56 1.3.3 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 1.3.4 Infimal Convolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 1.3.5 Recession Functions and the Perspective Function. . . . . . . 62 1.4 Duality for Nonconvex Problems. . . . . . . . . . . . . . . . . . . . . . . . . 65 1.4.1 Convex Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 1.4.2 Applications of the Shapley–Folkman Theorem. . . . . . . . . 70 1.4.3 First-Order Optimality Conditions. . . . . . . . . . . . . . . . . . . 72 1.5 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2 Semidefinite and Semi-infinite Programming . . . . . . . . . . . . . . . . . . 75 2.1 Matrix Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.1.1 The Frobenius Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 2.1.2 Positive Semidefinite Linear Programming . . . . . . . . . . . . 77 ix x Contents 2.2 Rotationally Invariant Matrix Functions. . . . . . . . . . . . . . . . . . . . 80 2.2.1 Computation of the Subdifferential . . . . . . . . . . . . . . . . . . 80 2.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.2.3 Logarithmic Penalty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.3 SDP Relaxations of Nonconvex Problems . . . . . . . . . . . . . . . . . . 87 2.3.1 Relaxation of Quadratic Problems. . . . . . . . . . . . . . . . . . . 87 2.3.2 Relaxation of Integer Constraints . . . . . . . . . . . . . . . . . . . 90 2.4 Second-Order Cone Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . 91 2.4.1 Examples of SOC Reformulations . . . . . . . . . . . . . . . . . . 91 2.4.2 Linear SOC Duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.4.3 SDP Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.5 Semi-infinite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2.5.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 2.5.2 Multipliers with Finite Support. . . . . . . . . . . . . . . . . . . . . 97 2.5.3 Chebyshev Approximation . . . . . . . . . . . . . . . . . . . . . . . . 101 2.5.4 Chebyshev Polynomials and Lagrange Interpolation. . . . . . 103 2.6 Nonnegative Polynomials over R . . . . . . . . . . . . . . . . . . . . . . . . 106 2.6.1 Nonnegative Polynomials. . . . . . . . . . . . . . . . . . . . . . . . . 106 2.6.2 Characterisation of Moments . . . . . . . . . . . . . . . . . . . . . . 111 2.6.3 Maximal Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 2.7 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3 An Integration Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.1 Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.1.1 Measurable Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.1.2 Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.1.3 Kolmogorov’s Extension of Measures. . . . . . . . . . . . . . . . 125 3.1.4 Limits of Measurable Functions . . . . . . . . . . . . . . . . . . . . 127 3.1.5 Integration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 3.1.6 LpSpaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 3.1.7 Bochner Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 3.2 Integral Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 3.2.1 Minimization of Carathéodory Integrals . . . . . . . . . . . . . . 142 3.2.2 Measurable Multimappings. . . . . . . . . . . . . . . . . . . . . . . . 143 3.2.3 Convex Integrands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 3.2.4 Conjugates of Integral Functionals . . . . . . . . . . . . . . . . . . 146 3.2.5 Deterministic Decisions in Rm . . . . . . . . . . . . . . . . . . . . . 150 3.2.6 Constrained Random Decisions . . . . . . . . . . . . . . . . . . . . 152 3.2.7 Linear Programming with Simple Recourse. . . . . . . . . . . . 153 3.3 Applications of the Shapley–Folkman Theorem . . . . . . . . . . . . . . 156 3.3.1 Integrals of Multimappings. . . . . . . . . . . . . . . . . . . . . . . . 156 3.3.2 Constraints on Integral Terms. . . . . . . . . . . . . . . . . . . . . . 159 Contents xi 3.4 Examples and Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 3.5 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2 Utility Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 4.2.2 Optimized Utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 4.3 Monetary Measures of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.3.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.3.2 Convex Monetary Measures of Risk. . . . . . . . . . . . . . . . . 169 4.3.3 Acceptation Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 4.3.4 Risk Trading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.3.5 Deviation and Semideviation . . . . . . . . . . . . . . . . . . . . . . 172 4.3.6 Value at Risk and CVaR . . . . . . . . . . . . . . . . . . . . . . . . . 174 4.4 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 5 Sampling and Optimizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.1 Examples and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.1.1 Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.2 Convergence in Law and Related Asymptotics. . . . . . . . . . . . . . . 178 5.2.1 Probabilities over Metric Spaces. . . . . . . . . . . . . . . . . . . . 178 5.2.2 Convergence in Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.2.3 Central Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 185 5.2.4 Delta Theorems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 5.2.5 Solving Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.3 Error Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.3.1 The Empirical Distribution. . . . . . . . . . . . . . . . . . . . . . . . 190 5.3.2 Minimizing over a Sample. . . . . . . . . . . . . . . . . . . . . . . . 191 5.3.3 Uniform Convergence of Values. . . . . . . . . . . . . . . . . . . . 193 5.3.4 The Asymptotic Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.3.5 Expectation Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.4 Large Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.4.1 The Principle of Large Deviations . . . . . . . . . . . . . . . . . . 198 5.4.2 Error Estimates in Stochastic Programming. . . . . . . . . . . . 200 5.5 Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6 Dynamic Stochastic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.1 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.1.1 Functional Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . 201 6.1.2 Construction of the Conditional Expectation . . . . . . . . . . . 201 6.1.3 The Conditional Expectation of Non-integrable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.1.4 Computation in Some Simple Cases . . . . . . . . . . . . . . . . . 206

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.