ebook img

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science PDF

495 Pages·2016·4.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer Age Statistical Inference: Algorithms, Evidence, and Data Science

“Howandwhyiscomputationalstatisticstakingovertheworld?Inthisseriouswork ofsynthesisthatisalsofuntoread,EfronandHastie,twopioneersintheintegrationof parametricandnonparametricstatisticalideas,givetheirtakeontheunreasonableeffec- tivenessofstatisticsandmachinelearninginthecontextofaseriesofclear,historically informedexamples.” —AndrewGelman,ColumbiaUniversity “Thisunusualbookdescribesthenatureofstatisticsbydisplayingmultipleexamples ofthewaythefieldhasevolvedoverthepast60years,asithasadaptedtotherapid increaseinavailablecomputingpower.Theauthors’perspectiveissummarizednicely when they say, ‘Very roughly speaking, algorithms are what statisticians do, while inference says why they do them.’ The book explains this ‘why’; that is, it explains the purpose and progress of statistical research, through a close look at many major methods,methodstheauthorsthemselveshaveadvancedandstudiedatgreatlength. Bothenjoyableandenlightening,ComputerAgeStatisticalInferenceiswrittenespe- ciallyforthosewhowanttohearthebigideas,andseetheminstantiatedthroughthe essentialmathematicsthatdefinesstatisticalanalysis.Itmakesagreatsupplementto thetraditionalcurriculaforbeginninggraduatestudents.” —RobKass,CarnegieMellonUniversity “This is a terrific book. It gives a clear, accessible, and entertaining account of the interplaybetweentheoryandmethodologicaldevelopmentthathasdrivenstatisticsin thecomputerage.Theauthorssucceedbrilliantlyinlocatingcontemporaryalgorithmic methodologiesforanalysisof‘bigdata’withintheframeworkofestablishedstatistical theory.” —AlastairYoung,ImperialCollegeLondon “Thisisaguidedtourofmodernstatisticsthatemphasizestheconceptualandcompu- tationaladvancesofthelastcentury.Authoredbytwomastersofthefield,itoffersjust therightmixofmathematicalanalysisandinsightfulcommentary.” —HalVarian,Google “EfronandHastieguideusthroughthemazeofbreakthroughstatisticalmethodologies followingthecomputingevolution:whytheyweredeveloped,theirproperties,andhow theyareused.Highlightingtheirorigins,thebookhelpsusunderstandeachmethod’s roles in inference and/or prediction. The inference–prediction distinction maintained throughoutthebookisawelcomeandimportantnoveltyinthelandscapeofstatistics books.” —GalitShmueli,NationalTsingHuaUniversity “A masterful guide to how the inferential bases of classical statistics can provide a principleddisciplinaryframeforthedatascienceofthetwenty-firstcentury.” —StephenStigler,UniversityofChicago,authorof SevenPillarsofStatisticalWisdom “ComputerAgeStatisticalInferenceoffersarefreshingviewofmodernstatistics.Algo- rithmicsareputonequalfootingwithintuition,properties,andtheabstractarguments behindthem.Themethodscoveredareindispensabletopracticingstatisticalanalysts intoday’sbigdataandbigcomputinglandscape.” —RobertGramacy,TheUniversityofChicagoBoothSchoolofBusiness “Everyaspiringdatascientistshouldcarefullystudythisbook,useitasareference,and carry it with them everywhere. The presentation through the two-and-a-half-century historyofstatisticalinferenceprovidesinsightintothedevelopmentofthediscipline, puttingdatascienceinitshistoricalplace.” —MarkGirolami,ImperialCollegeLondon “Efron and Hastie are two immensely talented and accomplished scholars who have managedtobrilliantlyweavethefiberof250yearsofstatisticalinferenceintothemore recent historical mechanization of computing. This book provides the reader with a mid-leveloverviewofthelast60-someyearsbydetailingthenuancesofastatistical communitythat,historically,hasbeenself-segregatedintocampsofBayes,frequentist, andFisheryetinmorerecentyearshasbeenunifiedbyadvancesincomputing.Whatis lefttobeexploredistheemergenceof,androlethat,bigdatatheorywillhaveinbridg- ingthegapbetweendatascienceandstatisticalmethodology.Whatevertheoutcome, theauthorsprovideavisionofhigh-speedcomputinghavingtremendouspotentialto enablethecontributionsofstatisticalinferencetowardmethodologiesthataddressboth globalandsocietalissues.” —RebeccaDoerge,CarnegieMellonUniversity “Inthisbook,twomastersofmodernstatisticsgiveaninsightfultouroftheintertwined worldsofstatisticsandcomputation.Throughaseriesofimportanttopics,Efronand Hastieilluminatehowmodernmethodsforpredictingandunderstandingdataarerooted inbothstatisticalandcomputationalthinking.Theyshowhowtheriseofcomputational powerhastransformedtraditionalmethodsandquestions,andhowithaspointedusto newwaysofthinkingaboutstatistics.” —DavidBlei,ColumbiaUniversity Absolutelybrilliant.Thisbeautifullywrittencompendiumreviewsmanybigstatistical ideas,includingtheauthors’own.Amustforanyoneengagedcreativelyinstatistics andthedatasciences,forrepeateduse.EfronandHastiedemonstratetheever-growing powerofstatisticalreasoning,past,present,andfuture. —CarlMorris,HarvardUniversity ComputerAgeStatisticalInference Thetwenty-firstcenturyhasseenabreathtakingexpansionofstatisticalmethodology, bothinscopeandininfluence.“Bigdata,”“datascience,”and“machinelearning”have becomefamiliartermsinthenews,asstatisticalmethodsarebroughttobearuponthe enormousdatasetsofmodernscienceandcommerce.Howdidwegethere?Andwhere arewegoing? Thisbooktakesusonanexhilaratingjourneythroughtherevolutionindataanaly- sisfollowingtheintroductionofelectroniccomputationinthe1950s.Beginningwith classical inferential theories – Bayesian, frequentist, Fisherian – individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain MonteCarlo,inferenceaftermodelselection,anddozensmore.Thedistinctlymodern approach integrates methodology and algorithms with statistical inference. The book endswithspeculationonthefuturedirectionofstatisticsanddatascience. BRADLEY EFRONisMaxH.SteinProfessor,ProfessorofStatistics,andProfessorof BiomedicalDataScienceatStanfordUniversity.Hehasheldvisitingfacultyappoint- ments at Harvard, UC Berkeley, and Imperial College London. Efron has worked extensivelyontheoriesofstatisticalinference,andistheinventorofthebootstrapsam- plingtechnique.HereceivedtheNationalMedalofSciencein2005andtheGuyMedal inGoldoftheRoyalStatisticalSocietyin2014. TREVOR HASTIEisJohnA.OverdeckProfessor,ProfessorofStatistics,andProfes- sorofBiomedicalDataScienceatStanfordUniversity.HeiscoauthorofElementsof StatisticalLearning,akeytextinthefieldofmoderndataanalysis.Heisalsoknownfor hisworkongeneralizedadditivemodelsandprincipalcurves,andforhiscontributions totheRcomputingenvironment.HastiewasawardedtheEmmanuelandCarolParzen prizeforStatisticalInnovationin2014. INSTITUTE OF MATHEMATICAL STATISTICS MONOGRAPHS EditorialBoard D.R.Cox(UniversityofOxford) B.Hambly(UniversityofOxford) S.Holmes(StanfordUniversity) J.Wellner(UniversityofWashington) IMSMonographsareconciseresearchmonographsofhighqualityonanybranchof statistics or probability of sufficient interest to warrant publication as books. Some concern relatively traditional topics in need of up-to-date assessment. Others are on emergingthemes.Inallcasestheobjectiveistoprovideabalancedviewofthefield. OtherBooksintheSeries 1. Large-ScaleInference,byBradleyEfron 2. NonparametricInferenceonManifolds,byAbhishekBhattacharyaandRabi Battacharya 3. TheSkew-NormalandRelatedFamilies,byAdelchiAzzalini 4. Case-ControlStudies,byRuthH.KeoghandD.R.Cox 5. ComputerAgeStatisticalInference,byBradleyEfronandTrevorHastie Computer Age Statistical Inference Algorithms, Evidence, and Data Science BRADLEY EFRON StanfordUniversity,California TREVOR HASTIE StanfordUniversity,California 32AvenueoftheAmericas,NewYorkNY10013-2473,USA CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107149892 (cid:2)c BradleyEfronandTrevorHastie2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-14989-2Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ToDonnaandLynda Contents Preface xv Acknowledgments xviii Notation xix PartI ClassicStatisticalInference 1 1 AlgorithmsandInference 3 1.1 ARegressionExample 4 1.2 HypothesisTesting 8 1.3 Notes 11 2 FrequentistInference 12 2.1 FrequentisminPractice 14 2.2 FrequentistOptimality 18 2.3 NotesandDetails 20 3 BayesianInference 22 3.1 TwoExamples 24 3.2 UninformativePriorDistributions 28 3.3 FlawsinFrequentistInference 30 3.4 ABayesian/FrequentistComparisonList 33 3.5 NotesandDetails 36 4 FisherianInferenceandMaximumLikelihoodEstimation 38 4.1 LikelihoodandMaximumLikelihood 38 4.2 FisherInformationandtheMLE 41 4.3 ConditionalInference 45 4.4 PermutationandRandomization 49 4.5 NotesandDetails 51 5 ParametricModelsandExponentialFamilies 53 ix

Description:
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.