Computational Acoustic Methods for the Design of Woodwind Instruments Antoine Lefebvre Computational Acoustic Modeling Laboratory McGill University Montreal, Quebec, Canada December 2010 AthesissubmittedtoMcGillUniversityinpartialfulfilmentoftherequirementsforthe degreeofDoctorofPhilosophy. c Copyright2010byAntoineLefebvre (cid:13) AllRightsReserved Abstract This thesis presents a number of methods for the computational analysis of woodwind instru- ments. The Transmission-Matrix Method (TMM) for the calculation of the input impedance of an instrument is described. An approach based on the Finite Element Method (FEM) is applied to the determination of the transmission-matrix parameters of woodwind instrument toneholes, from which new formulas are developed that extend the range of validity of cur- rent theories. The effect of a hanging keypad is investigated and discrepancies with current theories are found for short toneholes. This approach was applied as well to toneholes on a conical bore, and we conclude that the tonehole transmission matrix parameters developed on acylindricalboreareequallyvalidforuseonaconicalbore. A boundary condition for the approximation of the boundary layer losses for use with the FEM was developed, and it enables the simulation of complete woodwind instruments. The comparison of the simulations of instruments with many open or closed toneholes with calculations using the TMM reveal discrepancies that are most likely attributable to internal or external tonehole interactions. This is not taken into account in the TMM and poses a limit to its accuracy. The maximal error is found to be smaller than 10 cents. The effect of the curvature of the main bore is investigated using the FEM. The radiation impedance of a wind instrumentbelliscalculatedusingtheFEMandcomparedtoTMMcalculations;weconclude thattheTMMisnotappropriateforthesimulationofflaringbells. Finally,amethodispresentedforthecalculationofthetoneholepositionsanddimensions undervariousconstraintsusinganoptimizationalgorithm,whichisbasedontheestimationof the playing frequencies using the Transmission-Matrix Method. A number of simple wood- windinstrumentsaredesignedusingthisalgorithmandprototypesevaluated. Sommaire Cettethèseprésentedesméthodespourlaconceptiond’instrumentsdemusiqueàventàl’aide de calculs scientifiques. La méthode des matrices de transfert pour le calcul de l’impédance d’entrée est décrite. Une méthode basée sur le calcul par Éléments Finis est appliquée à la détermination des paramètres des matrices de transfert des trous latéraux des instruments à vent, à partir desquels de nouvelles équations sont développées pour étendre la validité des équations de la littérature. Des simulations par Éléments Finis de l’effet d’une clé suspendue au-dessusdestrouslatérauxdonnentdesrésultatsdifférentsdelathéoriepourlestrouscourts. La méthode est aussi appliquée à des trous sur un corps conique et nous concluons que les paramètresdesmatricesdetransmissiondéveloppéespourlestuyauxcylindriquessontégale- mentvalidespourlestuyauxconiques. Une condition frontière pour l’approximation des pertes viscothermiques dans les calculs par Éléments Finis est développée et permet la simulation d’instruments complets. La com- paraison des résultats de simulations d’instruments avec plusieurs trous ouverts ou fermés montrequelaméthodedesmatricesdetransfertprésentedeserreursprobablementattribuables aux interactions internes et externes entre les trous. Cet effet n’est pas pris en compte dans la méthode des matrices de transfert et pose une limite à la précision de cette méthode. L’erreur maximaleestdel’ordrede10cents. L’effetdelacourbureducorpsdel’instrumentestétudié avec la méthode des Éléments Finis. L’impédance de rayonnement du pavillon d’un instru- ment est calculée avec la méthode des matrices de transfert et comparée aux résultats de la méthode des Éléments Finis; nous concluons que la méthode des matrices de transfert n’est pasappropriéeàlasimulationdespavillons. Finalement, une méthode d’optimisation est présentée pour le calcul de la position et des dimensions des trous latéraux avec plusieurs contraintes, qui est basé sur l’estimation des fréquences de jeu avec la méthode des matrices de transfert. Plusieurs instruments simples sontconçusetdesprototypesfabriquésetévalués. Contents ListofTables vi ListofFigures viii Preface xiii Acknowledgements xiv Introduction 1 1 FundamentalsofWoodwindInstrumentAcoustics 6 1.1 Tuning,TimbreandEaseofPlay . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 TheExcitationMechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 TheAirColumn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 ModellingMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 CylindricalandConicalWaveguides . . . . . . . . . . . . . . . . . . 17 1.3.3 RadiationatOpenEnds . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3.4 Toneholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2 FiniteElementSimulationsofSingleWoodwindToneholes 35 2.1 ValidationoftheFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 FromFEMResultstoTransmissionMatrices . . . . . . . . . . . . . . . . . 43 2.2.1 TransmissionMatrixParametersofaTonehole . . . . . . . . . . . . 44 2.2.2 ToneholeModelValidation . . . . . . . . . . . . . . . . . . . . . . . 45 2.3 CharacterizationofWoodwindToneholes . . . . . . . . . . . . . . . . . . . 52 CONTENTS iv 2.3.1 EstimationoftheRequiredAccuracyoftheEquivalentLengths . . . 52 2.3.2 Data-fitFormulaeProcedure . . . . . . . . . . . . . . . . . . . . . . 53 2.3.3 TheSingleUnflangedTonehole . . . . . . . . . . . . . . . . . . . . 54 2.3.4 TheSingleToneholeonaThickPipe . . . . . . . . . . . . . . . . . 65 2.3.5 InfluenceoftheKeypad . . . . . . . . . . . . . . . . . . . . . . . . 72 2.3.6 ImpactofConicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3 FiniteElementSimulationsofWoodwindInstrumentAirColumns 78 3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 WaveguideswithaSingleTonehole . . . . . . . . . . . . . . . . . . . . . . 83 3.3 AConewithThreeToneholes . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.4 ACylinderwithTwelveToneholes . . . . . . . . . . . . . . . . . . . . . . . 90 3.5 AConewithTwelveToneholes . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.6 CurvatureoftheBore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.7 RadiationfromtheBell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4 AnApproachtotheComputer-AidedDesignofWoodwindInstruments 106 4.1 SelectingtheInstrument’sBoreShape . . . . . . . . . . . . . . . . . . . . . 111 4.2 CalculatingtheToneholePositionsandDimensions . . . . . . . . . . . . . . 113 4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3.1 Keefe’sFlute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.3.2 PVCFlute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.3.3 Chalumeau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3.4 ASix-ToneholeSaxophone . . . . . . . . . . . . . . . . . . . . . . 123 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Conclusion 127 A TheSingle-ReedExcitationMechanism 130 A.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 A.2 ReedAdmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 CONTENTS v A.3 GeneratorAdmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.4 TheReed’sEffectiveArea . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 A.5 EstimationofthePlayingFrequencies . . . . . . . . . . . . . . . . . . . . . 139 References 144 List of Tables (o) 1.1 Comparisonoftheexpressionsfortheopentoneholeinnerlengthcorrectiont 30 i 1.2 Comparisonoftheexpressionsfortheopentoneholeserieslengthcorrections (o) t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 a (o) 2.1 Seriesequivalentlengtht inmm. Comparisonbetweensimulation,theories, a andexperimentaldataforthetoneholesstudiedbyDalmontetal.(2002). . . 48 (o) 2.2 Series equivalent length t in mm. Comparison between simulation, and a theoriesandexperimentaldataforthetoneholesstudiedbyKeefe(1982a). . 48 2.3 Shuntlengthcorrectionincrementduetothepresenceofahangingkeypad . . 72 3.1 Comparisonoftheresonancefrequenciesforthecylindricalandconicalwaveg- uideswithoneopenoroneclosedtonehole. . . . . . . . . . . . . . . . . . . 85 3.2 Comparisonofthesimulatedandcalculatedresonancefrequenciesofaconical waveguidewiththreeopenorclosedtoneholes. . . . . . . . . . . . . . . . . 86 3.3 Comparisonofthesimulatedandcalculatedresonancefrequenciesofasimple clarinet-likesystemwithtwelveopenorclosedtoneholes. . . . . . . . . . . . 90 3.4 Comparisonofthesimulatedandcalculatedresonancefrequenciesofaconical waveguidewithtwelveopenorclosedtoneholes. . . . . . . . . . . . . . . . 94 3.5 Comparisonofthesimulatedandcalculatedresonancefrequenciesforastraight andtwocurvedaltosaxophonenecks. . . . . . . . . . . . . . . . . . . . . . 98 4.1 ComparisonofthetoneholelayoutofanoptimizedflutewithKeefe’sflute . . 117 4.2 Comparisonofthetoneholelayoutforaflute . . . . . . . . . . . . . . . . . 120 4.3 Comparison of the tonehole layout for two chalumeaux (equally tempered vs. just) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 LISTOFTABLES vii 4.4 Comparisonofthetoneholelayoutfortwoconicalwaveguideswithsixtoneholes124 A.1 Estimationoftheplayingfrequenciesforthesuccessiveharmonicsofaconical borewithmouthpiece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.2 Estimationoftheplayingfrequenciesforthesuccessiveharmonicsofaconical borewithcylindricalmouthpiecemodels. . . . . . . . . . . . . . . . . . . . 143 List of Figures 1.1 Input impedance of a cylindrical waveguide (top) and a conical waveguide (bottom): measured(filledcircles)andcalculated(solidline). . . . . . . . . . 22 1.2 Diagramrepresentingatoneholeonapipe. . . . . . . . . . . . . . . . . . . 25 1.3 Blockdiagramofasymmetrictonehole . . . . . . . . . . . . . . . . . . . . 26 2.1 Diagrams of the FEM models for the radiation of an unflanged pipe (top) and aflangedpipe(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 VisualisationoftheFEMmeshfortheunflangedpipetestcase. Thepipe(top) andtheradiationdomain(bottom)areseparatedtohelpvisualizethedetails. . 40 2.3 VisualisationoftheFEMmeshfortheflangedpipetestcase. . . . . . . . . . 41 2.4 Realpart(bottomgraph)andimaginarypart(topgraph)oftheradiationimpedance of the pipes: FEM results for the unflanged pipe (squares) and for the flanged pipe(circles)comparedwiththeory(dashed). . . . . . . . . . . . . . . . . . 42 2.5 VisualisationoftheFEMmeshfortheflangedtonehole . . . . . . . . . . . . 46 2.6 VisualisationoftheFEMmeshfortheunflangedtonehole . . . . . . . . . . 49 (o) 2.7 Shunt equivalent length t as a function of ka for the two toneholes studied s byDalmontetal.(2002). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 (o) 2.8 Shunt equivalent length t as a function of ka for the two toneholes studied s byKeefe(1982a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 (o) 2.9 Difference between the shunt length correction t and the tonehole height s t divided by the tonehole radius b as a function of δ for a single unflanged tonehole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 (o) 2.10 Comparisonoftheexpressionsfortheinnerlengthcorrectiont /b. . . . . . 57 i LISTOFFIGURES ix (o) 2.11 Difference between the shunt length correction t and the tonehole height s t divided by the tonehole radius b as a function of kb for a single unflanged tonehole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.12 Serieslengthcorrectiont(o)/bδ4 asafunctionofδforasingleunflangedtone- a hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.13 Series length correction t(o)/bδ4 as a function of t/b for δ=1.0 for a single a unflangedtonehole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 (c) 2.14 Shunt length correction t as a function of δ with t/b = 0.1 (bottom) and s t/b=2.0(top)forasingleclosedtonehole. . . . . . . . . . . . . . . . . . . 61 (c) 2.15 Inner length correctiont /b for closed toneholes as a function of kb for δ= i 0.2,0.5,0.8,1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.16 Serieslengthcorrectiont(c)/bδ4 asafunctionofδforaclosedtonehole. . . . 63 a 2.17 Series length correction t(c)/bδ4 as a function of t/b for δ=1.0 for a closed a tonehole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2.18 Diagramrepresentingatoneholeonapipe. . . . . . . . . . . . . . . . . . . 65 (o) 2.19 Difference between the shunt length correction t and the tonehole height t s dividedbythetoneholeradiusbasafunctionofδforatoneholeonathickpipe. 67 (o) 2.20 Difference between the shunt length correction t and the tonehole height t s divided by the tonehole radius b as a function of kb for a tonehole on a thick pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.21 Series length correction t(o)/bδ4 as a function of δ for an open tonehole on a a thickpipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 (c) 2.22 Shunt length correctiont as a function of δ for a closed tonehole on a thick s pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.23 Series length correction t(c)/bδ4 as a function of δ for a closed tonehole on a a thickpipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.24 Blockdiagramofanunsymmetrictonehole . . . . . . . . . . . . . . . . . . 73 (o) 2.25 Serieslengthcorrectiont inmmforatoneholeonaconicalborewithtaper a angleof3degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.1 Normalizedinputimpedanceofaclosedcylinderofdiameter15mmandlength 300mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.2 Inputimpedanceofaconicalwaveguidewiththreetoneholes. . . . . . . . . 88
Description: