ebook img

Complex, contact and symmetric manifolds: In honor of L. Vanhecke PDF

277 Pages·2004·1.269 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex, contact and symmetric manifolds: In honor of L. Vanhecke

Progress in Mathematics Volume234 SeriesEditors HymanBass JosephOesterle´ AlanWeinstein Complex, Contact and Symmetric Manifolds In Honor of L. Vanhecke Old˘rich Kowalski Emilio Musso Domenico Perrone Editors Birkha¨user Boston • Basel • Berlin EmilioMusso Old˘richKowalski Universita`diL’Aquila CharlesUniversity DipartimentodiMatematicaPura FacultyofMathematicsandPhysics edApplicata 18675Praha 67100L’Aquila CzechRepublic Italy DomenicoPerrone Universita`degliStudidiLecce DipartimentodiMatematica“E.DeGiorgi” 73100Lecce Italy AMSSubjectClassifications:Primary:53Cxx,53Bxx,53Dxx,57Sxx,58Kxx,22Exx;Secondary: 53C15,53C20,53C21,53C22,53C25,53C26,53C30,53C35,53C40,53C43,53C50,53C55,53C65, 53B05,53B20,53B25,53B30,53B35,53B40,53D10,53D15,55S30,55P62,57S17,57S25,58K05, 22E15,22E67 ISBN0-8176-3850-4 Printedonacid-freepaper. (cid:1)c2005Birkha¨userBoston Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- tenpermissionofthepublisher(SpringerScience+BusinessMediaInc.,RightsandPermissions,233 SpringStreet,NewYork,NY10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (TXQ/HP) 987654321 SPIN10944936 www.birkhauser.com Contents Preface .......................................................... vii CurvatureofContactMetricManifolds DavidE.Blair..................................................... 1 ACaseforCurvature:theUnitTangentBundle H.EricBoeckx .................................................... 15 ConvexHypersurfacesinHadamardManifolds A.A.Borisenko .................................................... 27 ContactMetricGeometryoftheUnitTangentSphereBundle G.Calvaruso...................................................... 41 Topological–antitopologicalFusionEquations,PluriharmonicMapsand SpecialKa¨hlerManifolds VicenteCorte´s,LarsScha¨fer ......................................... 59 Z andZ-DeformationTheoryforHolomorphicandSymplecticManifolds 2 PaolodeBartolomeis ............................................... 75 Commutative Condition on the Second Fundamental Form of CR-submanifoldsofMaximalCR-dimensionofaKa¨hlerManifold MirjanaDjoric´ .................................................... 105 TheGeographyofNon-FormalManifolds MarisaFerna´ndezandVicenteMun˜oz.................................. 121 vi Contents Total Scalar Curvatures of Geodesic Spheres and of Boundaries of GeodesicDisks J.C.D´ıaz-Ramos,E.Garc´ıa-R´ıo,andL.Hervella ........................ 131 CurvatureHomogeneousPseudo-RiemannianManifoldswhicharenot LocallyHomogeneous CoreyDunnandPeterB.Gilkey....................................... 145 OnHermitianGeometryofComplexSurfaces A.FujikiandM.Pontecorvo.......................................... 153 UnitVectorFieldsthatareCriticalPointsoftheVolumeandoftheEnergy: CharacterizationandExamples OlgaGil-Medrano ................................................. 165 On3D-RiemannianManifoldswithPrescribedRicciEigenvalues OldrˇichKowalskiandZdeneˇkVla´sˇek................................... 187 TwoProblemsinRealandComplexIntegralGeometry A.M.Naveira ..................................................... 209 NotesontheGoldbergConjectureinDimensionFour TakashiOguroandKoueiSekigawa.................................... 221 CurvedFlats,ExteriorDifferentialSystems,andConservationLaws Chuu-LianTerngandErxiaoWang .................................... 235 SymmetricSubmanifoldsofRiemannianSymmetricSpacesandSymmetric R-spaces KazumiTsukada ................................................... 255 ComplexformsofQuaternionicSymmetricSpaces JosephA.Wolf..................................................... 265 Preface Thisvolumecontainstheextendedversionsofalmostalllecturesdeliveredduringthe InternationalConference“CurvatureinGeometry”heldinLecce(Italy),11–14June 2003,inhonourofProfessorLievenVanhecke. Prof.LievenVanheckebeganhisprofessionalcareerattheCatholicUniversityof Leuven (Belgium) where he obtained his PhD in 1966. He has been teaching at that University since the academic year 1965–1966 and was appointed full professor in 1972.Since1972,hehasbeentheheadtheSectionofGeometryoftheMathematics DepartmentoftheCatholicUniversityofLeuven.From1972until1985healsotaught attheUniversityofAntwerpasapart-timeprofessorandbecameanHonoraryProfessor therein1985. Prof.LievenVanheckehasdoneresearchmainlyinthefieldofdifferentialgeometry and,moreparticularly,inRiemannianandpseudo-Riemanniangeometry.Throughout his scientific work, the study of curvature and of its properties has always played a centralrole.Hestartedwithclassicaltopicsonlinecongruencesandminimalvarieties. Later,heinvestigatedLorentzian,HermitianandKaehlerianmanifolds,almostcomplex andalmostcontactmanifolds,volumesofgeodesicspheresandtubes,homogeneous structuresonRiemannianmanifolds,harmonicspaces,generalizedHeisenberggroups and Damek-Ricci spaces, geodesic symmetries and reflections on Riemannian mani- folds,Sasakianmanifolds,variousgeneralizationsofsymmetricspaces(e.g.,naturally reductive,weaklysymmetricandD’Atrispaces),curvaturehomogeneousspaces,fo- liations,thegeometryofthetangentbundleandoftheunittangentbundle,geodesic transformations,specialvectorfieldsonRiemannianmanifolds(minimal,harmonic), etc. He has given more than one hundred lectures in almost as many universities and researchcentersaroundtheworld,andvisitedmanyoftheseuniversitiesasaresearcher. The almost 80 mathematicians from many different countries with whom Prof. LievenVanheckehascollaboratedtestifybothtothewiderangeofinterestingproblems coveredbyhisresearchand,aboveall,tohisuncommonpersonalqualities.Thishas madehimoneoftheworld’sleadingresearchersinthefieldofRiemanniangeometry. Mostofthepaperspublishedinthisvolumearewrittenbymathematicianswhohave beenatsomepointeitherhisstudentsorcollaborators. viii Preface We dedicate this volume to Professor Lieven Vanhecke with great affection and deeprespect. Acknowledgements Wewouldliketothank: DipartimentodiMatematica“E.DeGiorgi”dell’Universita`diLecce,Universita`degli StudidiLecce,Indam(GNSAGA),MIURproject“Proprieta`geometrichedellevarieta` reali e complesse” ( Unita` di ricerca dell’Universita` di L’Aquila e dell’Universita` di Roma “La Sapienza”). The Conference would have not been possible without their financialsupport. The Scientific Committee: D. Alekseevsky (Hull, England), V. Ancona (Firenze, Italy),J.-P.Bourguignon,(Paris,France),M.Cahen(Brussels,Belgium),L.A.Cordero (SantiagodeCompostela,Spain),M.Fernandez(Bilbao,Spain),O.Kowalski(Prague, Czech Republic), L. Lemaire (Brussels, Belgium), S. Marchiafava (Roma, Italy), E. Musso(L’Aquila,Italy),D.Perrone(Lecce,Italy),S.Salamon(Torino,Italy),I.Vais- man(Haifa,Israel).TheiradviceensuredtheinternationalinterestintheConference. Therefereesfortheircarefulwork. The Organizing Committee: R. A. Marinosci (coordinator) (Lecce, Italy), G. De Cecco (Lecce, Italy), E. Boeckx (Leuven, Belgium), G. Calvaruso (Lecce, Italy), L. Nicolodi(Parma,Italy),E.Musso(L’Aquila,Italy),D.Perrone(Lecce,Italy).Wewant to express special thanks to Prof. R. A. Marinosci whose hard work contributed so muchtothesuccessoftheConference. WearealsogratefultoMrs.FaustaGuzzoni(Parma,Italy)forhervaluablesupport inthetechnicalpreparationoftheseProceedings. Finally,ourthanksgototheparticipants,thespeakers,andtoallwhocontributed inmanywaystotherealizationoftheConference. Jerusalem YaakovFriedman October,2004 Curvature of Contact Metric Manifolds(cid:1) DavidE.Blair DepartmentofMathematics, MichiganStateUniversity,EastLansing,MI48824 [email protected] DedicatedtoProfessorLievenVanhecke Summary. Thisessaysurveysanumberofresultsandopenquestionsconcerningthecurvature ofRiemannianmetricsassociatedtoacontactform. In1975,whentheauthorwasonsabbaticalinStrasbourg,itwasanopenquestion whetherornotthe5-toruscarriedacontactstructure.Theauthor,beinginterestedinthe Riemanniangeometryofcontactmanifolds,provedatthattime([4])thatonacontact manifold of dimension ≥ 5, there are no flat associated metrics. Shortly thereafter, R.Lutz[31]provedthatthe5-torusdoesindeedadmitacontactstructureandhencethe naturalflatmetriconthe5-torusisnotanassociatedmetric.Thenon-flatnessresultof 1975wasgeneralizedbyZ.Olszak[35],whoprovedin1978thatacontactmetricman- ifoldofconstantcurvaturecanddimension≥5isSasakianandofconstantcurvature +1.Indimension3,theonlyconstantcurvaturecasesareofcurvature0and1aswewill notebelow.Sometimesonehasanintuitivesensethattheexistenceofacontactform tendstotightenupthemanifold.Thenon-existenceofflatassociatedmetricsdoesraise thequestionastowhether,asidefromtheflat3-dimensionalcase,anycontactmetric manifoldmusthavesomepositivesectionalcurvature.Ifthemanifoldiscompact,itis known([7]p.99)thatthereisnoassociatedmetricofstrictlynegativecurvature.This followsfromadeepresultofA.Zeghib[48]ongeodesicplanefields.Recallthataplane fieldonaRiemannianmanifoldissaidtobegeodesicifanygeodesictangenttotheplane fieldatsomepointiseverywheretangenttoit.Zeghibprovesthatacompactnegatively curvedRiemannianmanifoldhasnoC1geodesicplanefield(ofnon-trivialdimension). Sinceforanyassociatedmetrictheintegralcurvesofthecharacteristicvectorfield,or Reebvectorfield,aregeodesics,thecharacteristicvectorfielddeterminesageodesic linefieldtowhichwecanapplythetheoremofZeghibtoobtainthefollowingresult. Theorem. On a compact contact manifold, there is no associated metric of strictly negativecurvature. (cid:1)Thisessayisanexpandedversionoftheauthor’slecturegivenattheconference“Curvature inGeometry”inhonorofProfessorLievenVanheckeinLecce,Italy,11–14June2003.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.