ebook img

CoE Advising Report PDF

116 Pages·2010·6.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CoE Advising Report

Chapter 13 The Pros and Cons of Diffusion, Filters and Fixers in Atmospheric General Circulation Models ChristianeJablonowskiandDavidL.Williamson AbstractAllatmosphericGeneralCirculationModels(GCMs)needsomeformof dissipation,eitherexplicitlyspecifiedorinherentinthechosennumericalschemes forthe spatial andtemporaldiscretizations.Thisdissipationmayserve manypur- poses,includingcleaningupnumericalnoisegeneratedbydispersionerrorsorcom- putational modes, and the Gibbs ringing in spectral models. Damping processes mightalsobeusedtocrudelyrepresentsubgridReynoldsstresses,eliminateunde- sirable noise due to poor initialization or grid-scale forcing from the physics pa- rameterizations,coverup weakcomputationalstability, damptracervariance,and preventtheaccumulationofpotentialenstrophyorenergyatthesmallestgridscales. ThischaptercriticallyreviewsthewideselectionofdissipativeprocessesinGCMs. Theyaretheexplicitlyaddeddiffusionandhyper-diffusionmechanisms,divergence damping, vorticity damping, external mode damping, sponge layers, spatial and temporalfilters,inherentdiffusionpropertiesofthenumericalschemes,andaposte- riorifixersusedtorestorelostconservationproperties.Alltheoreticalconsiderations aresupportedbymanypracticalexamplesfromawideselectionofGCMs.Theex- amplesutilizeidealizedtestcasestoisolatecausesandeffects,andtherebyhighlight theprosandconsofthediffusion,filtersandfixersinGCMs. 13.1 Introduction Therearemanydesignaspectsthat needto beconsideredwhenbuildingthe fluid dynamicscomponent,theso-calleddynamicalcore,foratmosphericGeneralCircu- ChristianeJablonowski DepartmentofAtmospheric,OceanicandSpaceSciences,UniversityofMichigan,2455Hayward St.,AnnArbor,MI48109,USA,e-mail:[email protected] DavidL.Williamson NationalCenterforAtmosphericResearch, 1850TableMesaDrive,Boulder,CO80305,USA, e-mail:[email protected] 387 388 ChristianeJablonowskiandDavidL.Williamson lation Models(GCMs). Amongthem arethe choice ofthe equationset andprog- nosticvariables,thecomputationalgridandgridstaggeringoptions,thespatialand temporalnumericaldiscretizations,built-inconservationproperties,andthechoice of dissipative processes that (1) might be needed to keep a model simulation nu- mericallystableand(2)mighttruthfullymimicthecumulativeeffectsofunresolved subgrid-scale processes on the resolved fluid flow. The latter aspect is at least a “hope”in theGCM modelingcommunity.Here,thephrasesubgrid-scaledenotes thedryadiabaticunresolvedprocessesinthedynamicalcore.Thisisincontrastto allotherunresolvedprocessesthatleadtophysicalparameterizationssuchasradi- ation,convection,cloudprocessesandplanetaryboundarylayerphenomena.These arenotconsideredhere,eventhoughtheyareintimatelycoupledtotheequationsof motion.Thischaptershedslightontheprosandconsofthemostpopularprocesses to handle both “physical”or “unphysical”subgrid-scale flow and mixing,and re- viewstheuseofexplicitlyaddedandinherentdiffusion,filtersandfixersinGCMs. ThesearerarelydocumentedintherefereedGCMliteraturebutmightbedetailed intechnicalmodeldescriptions. It is commonpractice in GCMs to include a parameterizationof the effects of subgrid-scalemotionsin the horizontalmomentumand thermodynamicequations that is formulated as a local diffusive mixing. In fact, all numerical models need some form of dissipation, either explicitly specified or inherentin the chosen nu- mericalschemesforthespatialandtemporaldiscretizations.Thisdissipationmay serve manypurposes,includingcleaningup numericalnoisegeneratedby disper- sion errors,computationalmodes,or the Gibbsringing,crudelyrepresentingsub- grid Reynoldsstresses, eliminating undesirable noise dueto poor initialization or grid-scaleforcingfromthephysicsparameterizations,coveringupweakcomputa- tionalstability,dampingtracervariance,andpreventingtheaccumulationofpoten- tialenstrophyorenergyatthegridscale(Woodetal2007;Thuburn2008a).Such an accumulation of energy is due to the physical downscale cascade and can re- sult in excessive small-scale noise. It is known as spectral blocking and leads to anupturn(hook)orflatteninginthekineticenergyspectrumatthesmallestscales. Furthermore,physical“noise”in GCMs mightoriginatefromparameterizedgrid- scaleforcingsorfromsurfaceboundaryconditionssuchasorography,theland-sea orland-usemask. Anaccumulationofenergyandenstrophyatthe smallest scalesmayalsoarise duetoanumericalmisrepresentationofnonlinearinteractions,theso-calledalias- ingeffect.Nonlinearinteractionsandaliasingmostlyoriginatefromthe quadratic orhigher-ordertermsintheequationsofmotion.Inessence,productsofwavescan create new waves that are shorter than 2!x where !x is the physical grid spac- ing.Thesewavescannotberepresentedonamodelgridandarealiasedintolonger waves.Aliasing,ifleftunchecked,canleadtoablowupofthesolution.Thisphe- nomenonis characterizedas nonlinear computationalinstability as first discussed by Phillips (1959). Note that almost all GCMs suffer to some degree from alias- ing.Exceptionsarespectraltransformmodelswithquadratictransformgridswhich eliminatethealiasingofquadraticadvectionterms,themostproblematicform,but donotcompletelyeliminatealiasingfromhigher-orderterms.Nonlinearcomputa- 13 Diffusion,filtersandfixersinGCMs 389 tional instability does not occur in models that conserve quadratic quantities like enstrophyandkineticenergy(Arakawa1966;ArakawaandLamb1981).Aliasing errorsare not necessarily fatal. Whether an amplification of the waves occursde- pendsonthe phaserelationbetweenthemisrepresentedandoriginalwavesinthe model.Moreinformationonnonlinearcomputationalinstabilityandaliasingispro- videdintextbookslikeDurran(1999,2010),Kalnay(2003)orLin(2007). All mixingprocessesremoveenergyand enstrophyfrom the simulation which would otherwise build up to unrealistic proportions.Frequently, the included dis- sipation is restricted to be in the horizontal, as there is usually sufficient vertical mixing or diffusion in the physical boundarylayer turbulence and convectivepa- rameterizationsin full GCMs or sufficient inherentnumerical diffusionto control noise in the vertical direction. Sometimes, vertical diffusion is also explicitly in- cluded in the dynamical core and applied throughout the whole troposphere. An exampleisthemodelbyTomitaandSatoh(2004)whichisdiscussedlater. A common expectation might be that dissipative formulationsbased on turbu- lence theory or observations provide a physical foundation for the subgrid-scale mixing.However,suchphysicalmotivationisnotguaranteedandeachadhocmix- ingprocessinaGCMmustbecriticallyreviewed.AspointedoutbyMellor(1985) the horizontal diffusivities in use by GCMs are typically many orders of magni- tude larger than those which would be appropriate for turbulence closures. Thus, horizontaldiffusionusedbymostmodelscannotbeconsideredarepresentationof turbulencebutshouldbeviewedasasubstitutemechanismforunresolvedhorizon- tal advectiveprocesses.Awarenessof thismightoffersomeguidancein choosing anadequatesubgrid-scalemixingscheme. Mixing in GCMs generally serves as a numerical filter and neither reflects the mathematical representation of the energy or enstrophy transfer to small scales nor the representation of physical molecular diffusion (Koshyk and Boer 1995). Subgrid-scaleprocesses,althoughsmall,canhaveaprofoundimpactonthelarge- scale circulation. For example, diffusive mechanisms affect the propagation of wavesandtherebythemeanflowthroughwave-meanflowinteractions.Inaddition, bothinherentandexplicitlyaddeddissipationprocessessmearoutsharpgradients inthetracerfields,andmayleadtounphysicalandoverlystrongmixing.Suchmix- ing might provide feedbacks to the physical parameterizations. For example, the precipitationfieldmightbehighlyinfluencedbythediffusivecharacteristicsofthe moisturetransportalgorithminthedynamicalcore.Thenotionofoverlydiffusive GCMswasdiscussedbyShutts(2005).Hearguedthatnumericaladvectionerrors, horizontal diffusion and parameterization schemes like the gravity wave drag or convection,actasenergysinksandleadtoexcessiveenergydissipationinGCMs. However,suchaconclusionmightbehighlymodeldependent. In summary, some mixing processes are used for purely numerical reasons to prevent the model from becoming unstable. Others are meant to mimic subgrid- scaleturbulenceprocessesthatareunsolvedonthechosenmodelgrid.Inpractice, manyfiltersandmixingprocessesareusedatonce,whichmakesitmoredifficultto evaluatetheirindividualeffects.Theformofthediffusionprocessesinatmospheric dynamical cores varies widely and is somewhat arbitrary. There are explicit dis- 390 ChristianeJablonowskiandDavidL.Williamson sipationprocessesandfilters,inherentnumericaldissipation,andfixersin GCMs. Throughoutthechapterweassociatethephraseexplicitdiffusionwithprocessesex- plicityaddedtotheequationsofmotion.Thephraseimplicitdiffusioncharacterizes theinherentdissipationofnumericalschemes.Thesephrasesareintendedtomake adistinctionfromexplicitandimplicitnumericalapproximationstodiffusionoper- ators.Notethatthewords“diffusion”,“dissipation”and“viscosity”areoftenused interchangeablyintheliterature.Othercharacterizationsofdampingaresmoothing, filteringandmixing. 13.1.1 Modelequationsandtherepresentationofexplicitdiffusion Mixing processes in GCMs can appear in many forms. A very dominant form is based on explicit dissipation mechanisms that get appended to the equations of motion shown in chapter 15. In the continuous equations this mixing symbolizes moleculardiffusion.However,GCMsarenotcapableofrepresentingmoleculardif- fusionat thenmormmscalesincetheyaretypicallyappliedwithhorizontalgrid spacingsbetween20-300km.NonhydrostaticGCMs(Tomitaetal2005;Fudeyasu etal2008)andmesoscalelimited-areamodelsliketheWeatherResearchandFore- casting Model WRF (Skamarocket al 2008)are also run with finer grid spacings ofafewkilometers.Otheratmosphericmodelswithevenfinerscalesmightutilize theLargeEddySimulation(LES)approach.LESisamathematicalmodelfortur- bulencethatisbasedupontheNavier-Stokesequationswithbuilt-inlow-passfilter. TheunderlyingideawasinitiallyproposedbySmagorinsky(1963)andfurtherde- velopedby Deardorff(1970).LES hasbeenextensivelyused to studysmall-scale physicalprocessesandmixingintheatmosphere.Butinanycase,modelstruncate themulti-scalespectrumofatmosphericmotionswellabovethemoleculardiffusion scales.Theunresolvedpartistypicallymodeledasdissipationandonemighthope thatitadequatelycapturestheadiabaticsubgrid-scaleprocessesinsomepoorlyun- derstoodway. Explicit dissipation can be added to the momentumand thermodynamicequa- tionsinthesymbolicform "# =Dyn(#)+Phys(#)+F (13.1) # "t whereDyn(#)denotesthetimetendenciesoftheprognosticvariable#according totheresolvedadiabaticdynamics,Phys(#)symbolizesthetime tendenciesfrom thesubgrid-scalediabaticphysicalparameterizations,andF isthedissipation.The # actualformofthisdissipationismodeldependent.Forexample,modelsinmomen- tum form,that utilize the zonal and meridionalvelocitiesu, v and temperatureT, might append the diffusive terms Fu,Fv,FT. Models in vorticity-divergence($,%) formaddthediffusionF ,F ,F ,orevenreplaceF withadiffusionoftheabsolute $ % T $ vorticityF where f symbolizestheCoriolisparameter.Alternatively,ifthepo- $+f tentialtemperature&isselectedinthethermodynamicequationadiffusivetermF & 13 Diffusion,filtersandfixersinGCMs 391 mightbechosen.Dissipationmightalsobeappliedtothetracertransportequations, andincaseofnonhydrostaticmodelstotheverticalvelocity.Whetherexplicitdiffu- sionisneededforcomputationalstabilityismodeldependent.Somemodelsprefer tocontrolthesmallestscalesviainherentnumericaldissipationandselectF =0. # However,theformofF isoneofthemainfociinsections13.3-13.5,andtherefore # weintroducethegenericformoftheforcinghere. 13.1.2 Overviewofthechapter Thischapterpresentsacomprehensivereviewofdissipativeprocessesandfixersin generalcirculationmodels.Manypointerstoreferencesaregiven,andweillustrate thepracticalimplicationsofthediffusion,filtersandfixersonthefluidflowinatmo- sphericdynamicalcores.Inparticular,wereviewtheprinciplesbehindthedifferent dissipative formulations, isolate causes and effects, provide many examples from today’sGCMs and utilize idealizeddynamicalcoretest cases andso-calledaqua- planetsimulationstodemonstratetheconcepts.Thesetestcasesarebrieflyoutlined insection13.2.Overall,wequoteorshowexamplesfromover20differentdynami- calcorestohighlightthebroadspectrumofthedissipativeprocessesinGCMs.The modelsarelistedinsection13.2.Wecharacterizefourteenofthemingreaterdetail intheAppendixsincetheyareusedasexamplesthroughoutthechapter. Thechapterisorganizedasfollows.Sections13.3and13.4discussthemostpop- ularexplicitdiffusionanddampingmechanismsinthedynamicalcoresofGCMs. Section 13.3 includes the classical linear and nonlinear horizontal diffusion and hyper-diffusion,their diffusion coefficients and stability constraints, and physical consistency arguments. Section 13.4 discusses the 2D and 3D divergence damp- ing,vorticitydamping,Rayleighfrictionanddiffusivespongesnearthemodeltop, and externalmode damping.In general,it is debatablewhether filters are consid- eredexplicitdissipationorjustacomputationaltechniquetokeepamodelnumeri- callystable.Here,wechoosetopresentthemintheirowncategoryinsection13.5 wherebothtemporalandspatialfilterareassessed.Section13.6capturesthebasic ideas behind inherent numerical dissipation which is nonlinear and sometimes is interpretedasphysicallymotivateddiffusion.Section13.7shedslightonthecon- servationpropertiesofatmosphericGCMsandintroducesaposteriorifixers.They includethedryairmassfixer,fixersfortracermassesandtotalenergyfixers.Some finalthoughtsarepresentedinsection13.8. 13.2 SelectedDynamicalCoresandTest Cases We illustrate manyof the effectsof the diffusion,filters and fixersin GCMs with thehelpof2Dshallowwateror3Dhydrostaticmodelrunstodiscussthepractical implications of the theoretical concepts. Throughoutthis chapter, we point to the 392 ChristianeJablonowskiandDavidL.Williamson specificimplementationsofthedissipativeprocesses,andquotetypicalvaluesfor the empirical coefficients from a variety of models to shows their spread in the GCMs.Theintentionistogivehands-onguidanceandpresentthedesignoptions. Inparticular,thischapterfeaturesexamplesfromthedynamicalcoresCAMEu- lerian, CAM semi-Lagrangian,COSMO, ECHAM5, FV, FVcubed, GEOS, GME, HOMME,ICON,IFS,NICAM,UMandWRF.TheAppendixexplainstheacronyms andbrieflycharacterizesthenumericalschemes.Mostmodelsareglobalhydrostatic GCMsandusetheshallow-atmosphereapproximation.Theonlyexceptionsarethe nonhydrostatic models COSMO, NICAM, UM and WRF that are built upon the deepatmosphereequationset(seeWhiteetal(2005)forareviewoftheequations). WealsobrieflyrefertoothermodelssuchasNASA’sModelEbytheGoddardInsti- tuteforSpaceStudies,theAtmosphericGCMfortheEarthSimulator(AFES)de- velopedbytheCenterforClimateSystemResearchattheUniversityofTokyoand the National Institute for EnvironmentalStudies (Japan),the Global Environmen- talMultiscale(GEM)modelfromtheCanadianMeteorologicalCentre,theGlobal Forecast System (GFS) and the Eta model developedby the National Centers for EnvironmentalPrediction(NCEP).Thereferencesforthesemodelsaregivenlater. The model simulations utilize a variety of idealized test cases. They include the steady-state and baroclinic wave test cases for dynamical cores suggested by JablonowskiandWilliamson(2006a,b),selectedshallowwatertestcasesfromthe Williamsonetal(1992)testsuite,theHeld-Suarezclimateforcing(HeldandSuarez 1994), a variant of the Held-Suarez test with modified equilibrium temperatures in the stratosphere (Williamson et al 1998), and the aqua-planet configuration as proposedbyNealeandHoskins(2000).Theadiabaticdynamicalcoreandshallow watertestcasesgenerallyassessthepropertiesofthenumericalschemesinshortde- terministicmodelrunsofupto30days.TheidealizedHeld-Suarez-typesimulations utilize a prescribedNewtoniantemperaturerelaxationandboundarylayerfriction thatreplacethephysicalparameterizationpackage.Thesemodelrunsaretypically integratedformultipleyearstoassess theclimatestatistics ona dryandspherical earthwithnomountains.Theaqua-planetassessmentsarethemostcomplexsimula- tionsdiscussedinthischapter.TheyrepresentmoistGCMrunsthatincludethefull physicalparameterizationsuitebututilizeasimplifiedlowerboundarycondition.In essence, the lower boundaryis replaced by a water coveredearth with prescribed sea surface temperatures. In addition, the settings of the physical constants and a symmetricozonedatasetareprescribedinaqua-planetsimulations. 13.3 ExplicitHorizontalDiffusion Thissectiondiscussestheideasbehindexplicithorizontaldiffusionmechanismsin GCMs. Inparticular,we assess thelinearsecond-orderdiffusion,the higher-order and thereby more scale-selective hyper-diffusion, reveal the selection criteria for thediffusioncoefficientsinbothspectraltransformandgridpointmodels,discuss theconceptofspectral viscosity,andreviewthe stabilityconstraintsforthediffu- 13 Diffusion,filtersandfixersinGCMs 393 sionequation.Inaddition,weintroducetheprinciplesbehindnonlinearhorizontal diffusionandbrieflysurveythephysicalconsistencyofexplicitdiffusionschemes. 13.3.1 Genericformoftheexplicitdiffusionmechanism Thegenericformoftheexplicitlineardiffusionisgivenby F#=( 1)q+1K2q’2q# (13.2) − whereq 1isapositiveinteger,2qdenotestheorderofthediffusion,K stands 2q ≥ forthediffusioncoefficientand’isthegradientoperator.Boththehorizontal2D gradientoperatororanapproximated3Dgradientoperatorhavebeenusedforthe horizontaldiffusionasfurtherexplainedbelow.Settingq=1yieldsasecond-order diffusionthatemergesfromphysicalprinciplessuchastheheatdiffusion,molecular diffusionandBrownianmotion.However,moleculardiffusionactsonthenanome- tertomillimeterscale,andisthereforeunresolvedonaGCMmodelgrid. In practice, second-orderdiffusionis often applied as an artificial sponge near the topboundary,andhasverylittle resemblancewith itsphysicalcounterpart.In general,morescale-selectivehyper-diffusionschemeswithq=2,3,4areselected in the majorityof the modeldomain.The most popularchoiceis the fourth-order hyper-diffusionwithq=2thatisalsocalledbi-harmonicdiffusionorsuperviscos- ity.Theuseofhyper-diffusionisoftenmotivatedbytheneedtomaximizetheratio of enstrophy to energy dissipation since 2D turbulence theory predicts a vanish- ingenergydissipationrateatincreasingReynoldsnumbers(SadournyandMaynard 1997).Thehighertheorderofthehyper-diffusion,thehighertheratioofenstrophy toenergydissipationbecomes.FargeandSadourny(1989)evensuggestedusinga 16th-orderhyper-diffusion. 13.3.2 ParticularformsofexplicitdiffusioninGCMs TheexactformofthedampingvarieswidelyinGCMs.Typically,forconvenience thehorizontaloperatorsareappliedalongmodellevelswiththepossibleexception oftheformulationforthescalartemperaturediffusion.Wenowlistseveralexamples toillustratethevarietyofthediffusionmechanisms.Ourfirstexampleistakenfrom theweatherforecastmodelGMEwhichhasbeendevelopedattheGermanWeather Service.Itappliesthefourth-orderhyper-diffusion Fu = K4’4u (13.3) − Fv = K4’4v (13.4) − FT = K4’4(T Tref) (13.5) − − 394 ChristianeJablonowskiandDavidL.Williamson where’isthehorizontalgradientoperatorandTref isareferencetemperaturethat dependsonlyonheight(Majewskietal2002).Atupperlevelsnearthemodeltop, asecond-orderdiffusionisapplied.GMEutilizeslocalbasisfunctionsthatareor- thogonalandconformperfectlytothesphericalsurface.Theyarelocallyanchored ineachtriangleofGME’sicosahedralgrid.Withinthelocalneighborhoodofagrid point the coordinate system is thereforenearly Cartesian.Note that Cartesian co- ordinatessimplifytherepresentationofthe’2q operatorsincethemetrictermsare equaltounity. If the diffusion is expressed in spherical coordinates many metric terms are present.Here,wefirstshowtheoperatorsforthreespatialdimensionsbeforesim- plifyingthem.Thescalar3DLaplacian’2 operatorinsphericalcoordinatesfor (3D) aprognosticvariable#hastheform 1 1 1 ’2(3D)#= r2cos2("))#+r2cos("((cos("(#)+r2"r(r2"r#) (13.6) whererdenotestheradialdistanceinthelocalverticaldirectionfromthecenterof theearth,)and(arethelongitudeandlatitude,andthenotation"x symbolizesa partialderivativeinthexdirectionwherexisaplaceholderfor),(andr.Inaddi- tion,the3DvectorLaplacianforthethree-dimensionalwindvectorv =(u,v,w)is 3 givenby 2sin( 2 1 ’2 u " v+ " w u (3D) −r2cos2( ) r2cos( ) −r2cos2(  1 2 2sin(  ’2 v = ’2 v v+ " w+ " u . (13.7) (3D) 3  (3D) −r2cos2( r2 ( r2cos2( )   2 2 2  ’2 w w " u " (cos(v)  (3D) −r2 −r2cos( ) −r2cos( (      Theseexpressionsaree.g.showninAppendixAinSatoh(2004).Theextraterms besidesthescalar’2 operatorariseduetothespatialvariationoftheunitvectors (3D) insphericalcoordinates.Withtheexceptionoftheundifferentiatedtermineachof the componentsthe extra terms are not necessarily negligiblein comparisonwith thoseofthescalardiffusionoperator.Infact,someofthemarecrucialinensuring thatthediffusionoperatorconservesangularmomentumasoutlinedbyStaniforth etal(2006). Generally, approximated forms of (13.6) and (13.7) are chosen to express the horizontaldiffusion.Thedistancerisoftenapproximatedbytheconstantradiusof theeartha,thetermscontainingtheverticalderivative"randverticalvelocityware dropped,andtheverticalcomponentofthevectorLaplacianisneglectedtocreatea 2Ddiffusionoperator.Thereplacementofthedistancerbyaisinfactanecessityin hydrostaticmodelsbasedontheprimitiveequations(Whiteetal2005).Thescalar 2DLaplacianthensimplifiesinthefollowingway 1 1 ’2#= " #+ " (cos(" #). (13.8) a2cos2( )) a2cos( ( ( 13 Diffusion,filtersandfixersinGCMs 395 The2DvectorLaplacianforthetwo-dimensionalwindvectorv=(u,v)isgivenby 2sin( 1 ’2u " v u ’2v= −a2cos2( ) −a2cos2( . (13.9)  1 2sin(  ’2v v+ " u −a2cos2( a2cos2( )     ThisformofthevectorLaplacianleadstothe“conventionalform”ofthehorizontal momentum diffusion as characterized by Becker (2001). Unfortunately,this form doesnotconserveangularmomentumasfurtherdiscussedinsection13.3.7.Some modelsalsodroptheextratermsandonlyapplythescalar2DLaplacianoperatorto thevectorwind(u,v)insphericalgeometry.Suchasimplifiedformise.g.provided as an optionalspongelayer dampingmechanismnear the modeltop in the finite- volume(FV)dynamicalcoreintheCommunityAtmosphereModelCAM(version 5)(Nealeetal2010).ThemodelCAMFVisusedattheNationalCenterforAtmo- sphericResearch(NCAR). There is another caveat. Both formulations of the Laplacian in Eqs. (13.7) or (13.9)wouldleadto anundesireddampingofa solidbodyrotationasthoroughly analyzed by Staniforthet al (2006)for the Unified Model (UM) developedat the UKMetOffice.Thereforeinpractice,amorecomplicatedformofthemomentum diffusionischoseninthemodelUMthatisappliedtothevelocitycomponentsu,v and w (see Staniforth et al (2006) for the derivation). The NCAR CAM spectral transform Eulerian (EUL) and semi-Lagrangian (SLD) dynamical cores (Collins etal2004)alsoincludesuchacorrectionforsolidbodyrotationasexplainedlater. Concerningthe scalar diffusionin the modelUM, a form similar to Eq. (13.8) isselectedforthediffusionofpotentialtemperature.Itisappliedtwice(including a sign reversal) to resemble a fourth-orderhyper-diffusionmechanism. The main differences to Eq. (13.8) are that (1) the model UM does not utilize a shallow- atmosphereapproximationand retainsthe radialdistancer, (2)a slope correction is utilized over steep terrain to lessen the spurious mixing along UM’s deformed orography-followingverticalcoordinate,and(3)thediffusioncoefficientisdiffer- ent in the two horizontal directions. The coefficient is constant in the meridional direction, but the strength of the diffusion in longitudinal direction is allowed to varywithlatitude.Thisleadstonon-isotropicdiffusionandisfurtherexplainedin section13.3.5.NotethatthemodelUMdoesnotneedhorizontaldiffusionforcom- putationalstabilityreasonsduetotheinherentnumericaldissipationintheinterpo- lationsofitssemi-Lagrangianscheme.Inpractice,theexplicitdiffusionistherefore optionalandnotusedbydefault.Forexample,itisneverutilizedinshortweather predictionsimulations(TerryDavies,personalcommunication). Scalardiffusionoftype(13.8)isalsoappliedinothermodelssuchasthespectral transformIntegratedForecastingSystem(IFS)attheEuropeanCentreforMedium- RangeWeatherForecast(Ritchieetal1995;ECMWF2010).Themodelutilizesa second-order(q=1)diffusionschemeclosetothemodeltopandafourth-order(q= 2)hyper-diffusionoftheprognosticscalarvariablesrelativevorticity$,horizontal divergence%andtemperature.Ityieldstheexplicitdiffusion 396 ChristianeJablonowskiandDavidL.Williamson F$ =(−1)q+1K2q’2q$ (13.10) F% =(−1)q+1K2q’2q% (13.11) FT =( 1)q+1K2q’2qT. (13.12) − Thisformofthe diffusionisfurthermoreutilizedbythespectraltransformmodel ECHAM5 developed at the Max-Planck Institute for Meteorology, where even higher-order diffusion operators are chosen below the sponge layer at the model top(Roeckneretal2003). Theapplicationofthediffusionalongslopinggeneralverticalcoordinates,like thehybridpressure-based*-coordinate(SimmonsandBurridge1981),isstraight- forward to implement, but as mentioned before can cause spurious mixing over mountains, especially in the neighborhoodof steep terrain. This is largely due to thepresenceoflargeverticaltemperaturevariationsalongtheslopingsurfacesthat overlaythehorizontalgradients.Suchspuriousmixingtriggeredbytheverticalvari- ationsisundesirableandmaygrowtosignificantproportions.Thereforeinpractice, the diffusion of the temperature in the model IFS is modified to approximatethe horizontaldiffusiononsurfacesofconstantpressureratherthanonthesloping*- coordinatesurfaces.Thisisfurtherexplainedinthetechnicalmodeldocumentation of the CAM EUL andSLD dynamicalcores(Collinset al 2004).CAM EUL and SLDapplythefourth-ordertemperaturediffusion "T "p FT = K4 ’4T ps ’4lnps (13.13) − ’ − "p"ps ( where pisthepressureand p symbolizesthesurfacepressure.Thesecondtermin s FT consistsoftheleadingterminthetransformationofthe’4operatorfrom*sur- facestopressuresurfaces.CAMalsoappliesasecond-ordersponge-layerdiffusion atupperlevels.ButsincetheupperlevelsinCAMcoincidewithpurepressurelevels thecorrectionisnotneededthere.Ingeneral,itisunclearwhetherdiffusionshould beappliedalongconstantmodellevels,constantpressurelevelsorevenalongcon- stant height or isentropic levels. If the diffusion primarily counteracts numerical artifacts,argumentscanbefoundthatitshouldbeappliedalongmodellevels.How- ever,iftheprimarymotivationistocharacterizephysicalmixing,height,pressureor isentropiclevelsareadvantageousasexplainedindetailbyStaniforthetal(2006). NotethatNCAR’sEULandSLDdynamicalcoresactuallyapplyavariantofthe diffusionshowninEqs.(13.10)and(13.11)totherelativevorticityandhorizontal divergencefieldswhichgeneralizestheapproachbyBourkeetal(1977).Itisgiven by 2 q F$ =(−1)q+1K2q ’2q($+f)+(−1)q+1($+f) a2 (13.14) ’ ) * ( 2 q F% =(−1)q+1K2q ’2q%+(−1)q+1% a2 (13.15) ’ ) * (

Description:
Exceptions are spectral transform models with quadratic transform grids which 13.1.1 Model equations and the representation of explicit diffusion.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.