ebook img

CliffsQuickReview calculus : Anton/Bivens/Davis version PDF

134 Pages·2003·0.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview CliffsQuickReview calculus : Anton/Bivens/Davis version

02 542257 FM.qxd 5/9/03 10:10 AM Page i CliffsQuickReview TM Calculus Anton/Bivens/Davis Version By Bernard V. Zandy, MA and Jonathan J. White, MS 02 542257 FM.qxd 5/9/03 10:10 AM Page ii About the Authors Publisher’s Acknowledgments Bernard V. Zandy, MA, Professor of Mathematics Editorial at Fullerton College in California has been teach- Project Editor: Brian Kramer ing secondary and college level mathematics for Acquisitions Editor: Sherry Gomoll 34 years. A co-author of the Cliffs PSAT and SAT Technical Editor: Dale Johnson Preparation Guides, Mr. Zandy has been a lecturer Composition and consultant for Bobrow Test Preparation Ser- Indexer: TECHBOOKS Production Services vices, conducting workshops at California State Proofreader: Joel K. Draper University and Colleges since 1977. Wiley Publishing Composition Services Jonathan J. White has a BA in mathematics from Coe College and an MS in mathematics from the University of Iowa. He is currently pursuing a PhD in Mathematics Pedagogy and Curriculum Research at the University of Oklahoma. CliffsQuickReview™Calculus Note: If you purchased this book without a cover, you Published by should be aware that this book is stolen property. It was Wiley Publishing, Inc. reported as “unsold and destroyed” to the publisher, and nei- 909 Third Avenue ther the author nor the publisher has received any payment New York, NY 10022 for this “stripped book.” www.wiley.com www.cliffsnotes.com Copyright © 2003 Wiley Publishing, Inc. New York, New York Library of Congress Control Number available from the Library of Congress ISBN: 0-7645-4225-7 Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 1O/QS/QW/QT/IN Published by Wiley Publishing, Inc., New York, NY Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopy- ing, recording, scanning, or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior writ- ten permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax 978-646-8700. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Pub- lishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, 317-572-3447, fax 317-572-4447, or e-mail [email protected] LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST EFFORTS IN PREPAR- ING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCU- RACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTA- TIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES. Trademarks:Wiley, the Wiley Publishing logo, Cliffs, CliffsNotes, CliffsAP, CliffsComplete, CliffsTestPrep, CliffsQuickReview, CliffsNote-a-Day, and all related trademarks, logos and trade dress are trademarks or registered trademarks of Wiley Publishing, Inc., in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned in this book. For general information on our other products and services or to obtain technical support, please contact our Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. is a trademark of Wiley Publishing, Inc. 542257 FM.qxd 5/9/03 2:30 PM Page iii Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Why You Need This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 How to Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Using Calculus 7e by Anton/Bivens/Davis (ABD) with CQR . . . . . . .2 Chapter 1: Review Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Interval Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Absolute Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Chapter 2: Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Intuitive Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Evaluating Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 One-sided Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Limits at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Limits Involving Trigonometric Functions . . . . . . . . . . . . . . . . . . . . .23 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Chapter 3: The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Trigonometric Function Differentiation . . . . . . . . . . . . . . . . . . . . . . .34 Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Higher Order Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Differentiation of Inverse Trigonometric Functions . . . . . . . . . . . . . .40 Differentiation of Exponential and Logarithmic Functions . . . . . . . .41 Chapter 4: Applications of the Derivative . . . . . . . . . . . . . . . . . . . . . . . .43 Tangent and Normal Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Critical Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Extreme Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Increasing/Decreasing Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 First Derivative Test for Relative Extrema . . . . . . . . . . . . . . . . . . . . . .49 Second Derivative Test for Relative Extrema . . . . . . . . . . . . . . . . . . .50 Concavity and Points of Inflection . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Maximum/Minimum Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Distance, Velocity, and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . .55 Related Rates of Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 02 542257 FM.qxd 5/9/03 10:10 AM Page iv iv CliffsQuickReviewCalculus Chapter 5: Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 Antiderivatives/Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . .63 Integration Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Basic formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Substitution and change of variables . . . . . . . . . . . . . . . . . . . . . . .66 Integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Trigonometric integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Distance, Velocity, and Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . .73 Definite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Definition of definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Properties of definite integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . .80 Definite integral evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Chapter 6: Applications of the Definite Integral . . . . . . . . . . . . . . . . . .88 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Volumes of Solids with Known Cross Sections . . . . . . . . . . . . . . . . . .93 Volumes of Solids of Revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Disk method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Washer method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 Cylindrical shell method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 CQR Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 CQR Resource Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 Appendix: Using Graphing Calculators in Calculus . . . . . . . . . . . . . . .116 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 02 542257 FM.qxd 5/9/03 10:10 AM Page v v Correlation Guide CORRELATION GUIDE: CLIFFSQUICKREVIEW CALCULUS WITH CALCULUS 7E BY ANTON, BIVENS, DAVIS CliffsQuickReview Calculus Calculus 7E Chapter Topic Title 1 Interval Notation Appendix A 1 Absolute Value Appendix B 1 Functions Sections 1.1, 1.2 1 Linear Equations Appendix C 1 Trigonometric Functions Appendix E 2 Intuitive Definition Section 2.1 2 Evaluating Limits Section 2.2 2 One-Sided Limits Sections 2.1, 2.2 2 Infinite Limits Sections 2.1, 2.2 2 Limits at Infinity Sections 2.1, 2.3 2 Limits Involving Trigonometric Functions Section 2.6 2 Continuity Section 2.5 3 Definition Section 3.2 3 Differentiation Rules Section 3.3 3 Trigonometric Function Differentiation Section 3.4 3 Chain Rule Section 3.5 3 Implicit Differentiation Section 3.6 3 Higher Order Derivatives Section 3.3 3 Differentiation of Inverse Trigonometric Functions Section 4.4 3 Differentiation of Exponential and Logarithmic Functions Section 4.3 (continued) 02 542257 FM.qxd 5/9/03 10:10 AM Page vi vi CliffsQuickReviewCalculus CliffsQuickReview Calculus Calculus 7E Chapter Topic Title 4 Tangent and Normal Lines Section 3.2 4 Critical Points Section 5.2 4 Extreme Value Theorem Section 5.5 4 Mean Value Theorem Section 5.8 4 Increasing/Decreasing Functions Section 5.1 4 First Derivative Test for Local Extrema Section 5.2 4 Second Derivative Test for Local Extrema Section 5.2 4 Concavity and Points of Inflection Section 5.1 4 Maximum/Minimum Problems Section 5.6 4 Distance, Velocity, Acceleration Section 5.4 4 Related Rates of Change Section 3.7 4 Differentials Section 3.8 5 Antiderivatives/Indefinite Integrals Section 6.2 5 Integration Techniques Section 6.2 5 Substitution and Change of Variables Section 6.3 5 Integration by Parts Section 8.2 5 Trigonometric Integrals Section 8.3 5 Trigonometric Substitutions Section 8.4 5 Distance, Velocity, and Acceleration Section 6.7 5 Definition of Definite Integrals Section 6.5 5 Properties of Definite Integrals Sections 6.5, 6.6 5 The Fundamental Theorem of Calculus Section 6.6 5 Definite Integral Evaluation Section 6.8 02 542257 FM.qxd 5/9/03 10:10 AM Page vii vii Correlation Guide Chapter Topic Title 6 Area Section 7.1 6 Volumes of Solids with Known Cross Sections Section 7.2 6 Disk Method Section 7.2 6 Washer Method Section 7.2 6 Cylindrical Shell Method Section 7.3 6 Arc Length Section 7.4 CORRELATION GUIDE: CLIFFSQUICKREVIEW CALCULUS WITH CALCULUS: EARLY TRANSCENDENTALS 7E BY ANTON, BIVENS, DAVIS CliffsQuickReview Calculus Calculus 7E Chapter Topic Title 1 Interval Notation Appendix A 1 Absolute Value Appendix B 1 Functions Sections 1.1, 1.2 1 Linear Equations Appendix C 1 Trigonometric Functions Appendix E 2 Intuitive Definition Section 2.1 2 Evaluating Limits Section 2.2 2 One-Sided Limits Sections 2.1, 2.2 2 Infinite Limits Sections 2.1, 2.2 2 Limits at Infinity Sections 2.1, 2.3 (continued) 02 542257 FM.qxd 5/9/03 10:10 AM Page viii viii CliffsQuickReviewCalculus CliffsQuickReview Calculus Calculus 7E Chapter Topic Title 2 Limits Involving Trigonometric Functions Section 2.6 2 Continuity Section 2.5 3 Definition Section 3.2 3 Differentiation Rules Section 3.3 3 Trigonometric Function Differentiation Section 3.4 3 Chain Rule Section 3.5 3 Implicit Differentiation Section 3.6 3 Higher Order Derivatives Section 3.3 3 Differentiation of Inverse Trigonometric Functions Section 4.4 3 Differentiation of Exponential and Logarithmic Functions Section 4.3 4 Tangent and Normal Lines Section 3.2 4 Critical Points Section 5.2 4 Extreme Value Theorem Section 5.5 4 Mean Value Theorem Section 5.8 4 Increasing/Decreasing Functions Section 5.1 4 First Derivative Test for Local Extrema Section 5.2 4 Second Derivative Test for Local Extrema Section 5.2 4 Concavity and Points of Inflection Section 5.1 4 Maximum/Minimum Problems Section 5.6 4 Distance, Velocity, Acceleration Section 5.4 4 Related Rates of Change Section 3.7 4 Differentials Section 3.8 02 542257 FM.qxd 5/9/03 10:10 AM Page ix ix Correlation Guide Chapter Topic Title 5 Antiderivatives/Indefinite Integrals Section 6.2 5 Integration Techniques Section 6.2 5 Substitution and Change of Variables Section 6.3 5 Integration by Parts Section 8.2 5 Trigonometric Integrals Section 8.3 5 Trigonometric Substitutions Section 8.4 5 Distance, Velocity, and Acceleration Section 6.7 5 Definition of Definite Integrals Section 6.5 5 Properties of Definite Integrals Sections 6.5, 6.6 5 The Fundamental Theorem of Calculus Section 6.6 5 Definite Integral Evaluation Section 6.8 6 Area Section 7.1 6 Volumes of Solids with Known Cross Sections Section 7.2 6 Disk Method Section 7.2 6 Washer Method Section 7.2 6 Cylindrical Shell Method Section 7.3 6 Arc Length Section 7.4 02 542257 FM.qxd 5/9/03 10:10 AM Page x x CliffsQuickReviewCalculus

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.