ebook img

Classical electrodynamics PDF

137 Pages·2001·0.668 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Classical electrodynamics

Classical Electrodynamics Theoretical PhysicsII Manuscript EnglishEdition Franz Wegner Institutfu¨r Theoretische Physik Ruprecht-Karls-Universita¨t Heidelberg 2003 2 c2003FranzWegnerUniversita¨tHeidelberg (cid:13) Copyingforprivatepurposeswithreferencetotheauthorallowed.Commercialuseforbidden. Iappreciatebeinginformedofmisprints. I am grateful to Jo¨rg Raufeisen, Andreas Haier, Stephan Frank, and Bastian Engeser for informing me of a numberofmisprintsinthefirstGermanedition. SimilarlyIthankBjo¨rnFeuerbacher,SebastianDiehl,Karsten Frese,MarkusGabrysch,andJanTomczakforinformingmeofmisprintsinthesecondedition. IamindebtedtoCorneliaMerkel,MelanieSteiert, andSonjaBartschforcarefullyreadingandcorrectingthe textofthebilingualedition. Books: Becker,Sauter: TheoriederElektrizita¨tI Jackson,ClassicalElectrodynamics Landau,Lifschitz: LehrbuchderTheoretischenPhysikII:KlassischeFeldtheorie Panofsky,Phillips,ClassicalElectricityandMagnetism Sommerfeld: Vorlesungenu¨berTheoretischePhysikIII:Elektrodynamik Stratton,ElectromagneticTheory Stumpf,Schuler: Elektrodynamik A Basic Equations c2003FranzWegnerUniversita¨tHeidelberg (cid:13) IntroductoryRemarks I assume that the student is already somewhat familiar with classical electrodynamics from an introductory course. Therefore I start with the complete set of equations and from this set I spezialize to variouscases of interest. InthismanuscriptIwilluseGaussianunitsinsteadoftheSI-units. Theconnectionbetweenbothsystemsand themotivationforusingGaussianunitswillbegiveninthenextsectionandinappendixA. FormulaeforvectoralgebraandvectoranalysisaregiveninappendixB.Awarningtothereader: Sometimes (B.11, B.15, B.34-B.50 and exercise after B.71) he/she should insert the result by him/herself. He/She is re- questedtoperformthecalculationsbyhim/herselforshouldatleastinserttheresultsgiveninthisscript. 1 Basic Equations of Electrodynamics Electrodynamicsdescribeselectricandmagneticfields,theirgenerationbychargesandelectriccurrents,their propagation(electromagneticwaves),andtheirreactiononmatter(forces). 1.a Chargesand Currents 1.a.(cid:11) ChargeDensity Thechargedensity(cid:26)isdefinedasthecharge(cid:1)qpervolumeelement(cid:1)V (cid:1)q dq (cid:26)(r)= lim = : (1.1) (cid:1)V 0(cid:1)V dV ! ThereforethechargeqinthevolumeV isgivenby q= d3r(cid:26)(r): (1.2) ZV Ifthechargedistributionconsistsofpointchargesq atpointsr,thenthechargedensityisgivenbythesum i i (cid:26)(r)= q(cid:14)3(r r); (1.3) i i (cid:0) i X whereDirac’sdelta-function(correctlydelta-distribution)hastheproperty f(r ) ifr V ZVd3rf(r)(cid:14)3(r(cid:0)r0)=( 00 ifr00 2<V : (1.4) Similarlyonedefinesthechargedensityperarea(cid:27)(r)atboundariesandsurfacesaschargeperarea dq (cid:27)(r)= ; (1.5) df similarlythechargedensityonaline. 3 4 ABasicEquations 1.a.(cid:12) CurrentandCurrentDensity ThecurrentI isthechargedqthatflowsthroughacertainareaF pertimedt, dq I = : (1.6) dt Bev(r;t)theaveragevelocityofthechargecarriersandntheunitvectornor- maltotheareaelement. Thenvdtisthedistancevectortraversedduringtime n dt. Multipliedbynoneobtainsthethicknessofthelayerv ndtofthecarriers (cid:1) v whichpassedthesurfaceduringtimedt.Multipliedbythesurfaceelementdf oneobtainsthevolumeofthecharge,whichflowsthroughthearea.Additional multiplicationby(cid:26)yieldsthechargedqwhichpassesduringtimedtthesurface df dq = vdt ndf(cid:26) (1.7) (cid:1) ZF I =dq=dt = v(r;t)(cid:26)(r;t) n(r)df = j(r;t) df (1.8) (cid:1) (cid:1) ZF ZF withthecurrentdensityj=(cid:26)vandtheorientedareaelementdf =ndf. 1.a.(cid:13) ConservationofChargeandEquationofContinuity ThechargeqinafixedvolumeV q(t)= d3r(cid:26)(r;t) (1.9) ZV changesasafunctionoftimeby dq(t) @(cid:26)(r;t) = d3r : (1.10) dt @t ZV This charge can only change, if some charge flows through the surface @V of the volume, since charge is conserved.WedenotethecurrentwhichflowsoutwardbyI. Then dq(t) = I(t)= j(r;t) df = d3rdivj(r;t); (1.11) dt (cid:0) (cid:0) (cid:1) (cid:0) Z@V ZV wherewemakeuseofthedivergencetheorem(B.59).Since(1.10)and(1.11)holdforanyvolumeandvolume element,theintegrandsinthevolumeintegralshavetobeequal @(cid:26)(r;t) + divj(r;t)=0: (1.12) @t Thisequationiscalledtheequationofcontinuity.Itexpressesindi(cid:11)erentialformtheconservationofcharge. 1.b Maxwell’sEquations The electric charges and currents generate the electric field E(r;t) and the magnetic induction B(r;t). This relationisdescribedbythefourMaxwellEquations @E(r;t) 4(cid:25) curlB(r;t) = j(r;t) (1.13) (cid:0) c@t c divE(r;t) = 4(cid:25)(cid:26)(r;t) (1.14) @B(r;t) curlE(r;t)+ = 0 (1.15) c@t divB(r;t) = 0: (1.16) TheseequationsnamedafterMaxwellareoftencalledMaxwell’sEquationsinthevacuum.However,theyare alsovalidinmatter. Thechargedensityandthecurrentdensitycontain allcontributions,the densitiesoffree chargesandpolarizationcharges,andoffreecurrentsandpolarization-andmagnetizationcurrents. Oftenonerequiresasaboundaryconditionthattheelectricandthemagneticfieldsvanishatinfinity. 1BasicEquationsofElectrodynamics 5 1.c CoulombandLorentzForce The electric field E and the magnetic induction B exert a force K on a charge q located at r, moving with a velocityv v K=qE(r)+q B(r): (1.17) c (cid:2) HereEandBarethecontributionswhichdonotcomefromqitself. Thefieldsgeneratedbyqitselfexertthe reactionforcewhichwewillnotconsiderfurther. Thefirst contributionin (1.17)is theCoulombforce, thesecond onethe Lorentzforce. Onehas c=299 792 458m/s. Laterwewillseethatthisisthevelocityoflightinvacuum. (Ithasbeendefinedwiththevaluegiven aboveinordertointroduceafactorbetweentimeandlength.) Theforceactingonasmallvolume(cid:1)V canbe writtenas (cid:1)K = k(r)(cid:1)V (1.18) 1 k(r) = (cid:26)(r)E(r)+ j(r) B(r): (1.19) c (cid:2) kiscalledthedensityofforce. TheelectromagneticforceactingonthevolumeV isgivenby K= d3rk(r): (1.20) ZV 6 ABasicEquations 2 Dimensions and Units 2.a GaussianUnits InthiscourseweuseGaussianunits. Weconsiderthedimensionsofthevariousquantities. Fromtheequation ofcontinuity(1.12)andMaxwell’sequations(1.13to1.16)oneobtains [(cid:26)]=[t] = [j]=[x] (2.1) [B]=[x] = [E]=([c][t])=[j]=[c] (2.2) [E]=[x] = [B]=([c][t])=[(cid:26)]: (2.3) Fromthisoneobtains [j] = [(cid:26)][x]=[t] (2.4) [E] = [(cid:26)][x] (2.5) [B] = [(cid:26)][c][t]=[(cid:26)][x]2=([c][t]); (2.6) and [c] = [x]=[t] (2.7) [B] = [(cid:26)][x]: (2.8) From(2.7)oneseesthatc reallyhasthedimensionofavelocity. Inordertodeterminethedimensionsofthe otherquantitieswestillhavetouseexpression(1.19)fortheforcedensityk [k]=[(cid:26)][E]=[(cid:26)]2[x]: (2.9) Fromthisoneobtains [(cid:26)]2 = [k]=[x]=dyncm 4 (2.10) (cid:0) [(cid:26)] = dyn1=2cm 2 (2.11) (cid:0) [E]=[B] = dyn1=2cm 1 (2.12) (cid:0) [j] = dyn1=2cm 1s 1 (2.13) (cid:0) (cid:0) [q] = [(cid:26)][x]3 =dyn1=2cm (2.14) [I] = [j][x]2 =dyn1=2cms 1: (2.15) (cid:0) 2.b Other SystemsofUnits Theunitforeachquantitycanbedefinedindependently.Fortunately,thisisnotusedextensively. BesidestheGaussiansystemofunitsanumberofothercgs-systemsisusedaswellastheSI-system(interna- tionalsystemofunits,Giorgi-system). Thelastoneisthelegalsysteminmanycountries(e.g. intheUSsince 1894,inGermanysince1898)andisusedfortechnicalpurposes. WhereasallelectromagneticquantitiesintheGaussiansystemareexpressedincm,gunds,theGiorgi-system usesbesidesthemechanicalunitsm,kgandstwootherunits,A(ampere)undV(volt). Theyarenotindepen- dent,butrelatedbytheunitofenergy 1kgm2s 2 =1J=1Ws=1AVs: (2.16) (cid:0) The conversion of the conventional systems of units can be described by three conversion factors (cid:15) , (cid:22) and 0 0 . The factors (cid:15) and (cid:22) (known as the dielectric constant and permeability constant of the vacuum in the 0 0 SI-system)andtheinterlinkingfactor (cid:13)=cp(cid:15) (cid:22) (2.17) 0 0 cancarrydimensionswhereas isadimensionlessnumber.Onedistinguishesbetweenrationalsystems =4(cid:25)) andnon-rationalsystems( =1)ofunits. Theconversionfactorsofsomeconventionalsystemsofunitsare 2DimensionsandUnits 7 SystemofUnits (cid:15) (cid:22) (cid:13) 0 0 Gaussian 1 1 c 1 electrostatic(esu) 1 c 2 1 1 (cid:0) electromagnetic(emu) c 2 1 1 1 (cid:0) Heaviside-Lorentz 1 1 c 4(cid:25) Giorgi(SI) (c2(cid:22) ) 1 4(cid:25) Vs 1 4(cid:25) 0 (cid:0) 107Am ThequantitiesintroduceduntilnowareexpressedinGaussianunitsbythoseofothersystemsofunits(indicated byanasterisk)inthefollowingway E= (cid:15) E 1dyn1=2cm 1=ˆ3 104V/m (2.18) 0 (cid:3) (cid:0) (cid:1) B= p =(cid:22)0B(cid:3) 1dyn1=2cm(cid:0)1=ˆ10(cid:0)4Vs/m2 (2.19) 1 q=p q 1dyn1=2cm=ˆ10 9=3As,similarly(cid:26);(cid:27);I; j: (2.20) (cid:3) (cid:0) p (cid:15) 0 Anexampleofconversion:TheCoulomb-Lorentz-forcecanbewritten 1 q p 1 1 K=q(E+ v B)= (cid:3) ( (cid:15) E + v B )=q (E + v B )=q (E + v B ): (2.21) c (cid:2) p (cid:15)0 0 (cid:3) cp(cid:22)0 (cid:2) (cid:3) (cid:3) (cid:3) cp(cid:15)0(cid:22)0 (cid:2) (cid:3) (cid:3) (cid:3) (cid:13) (cid:2) (cid:3) p The elementary chargee is 4:803 10 10 dyn1=2 cm in Gaussian units and 1:602 10 19 As in SI-units. The 0 (cid:0) (cid:0) (cid:1) (cid:1) electroncarriescharge e , theprotone , a nucleuswith Z protonsthe chargeZe , quarksthecharges e =3 0 0 0 0 (cid:0) (cid:6) and 2e =3. 0 (cid:6) Theconversionofotherquantitiesisgivenwheretheyareintroduced. AsummaryisgiveninAppendixA. 2.c MotivationforGaussianUnits IntheSI-systemtheelectricalfieldEandthedielectricdisplacementDaswellasthemagneticinductionBand themagnetic fieldH carry di(cid:11)erentdimensions. Thisleads easily tothe misleadingimpressionthat these are independentfields. Onamicroscopiclevelonedealsonlywithtwofields,EandB,(1.13-1.16)(Lorentz1892). However, the second set of fields is introduced only in order to extract the polarization and magnetization contributionsofchargesandcurrentsinmatterfromthetotalchargesandcurrents,andtoaddthemtothefields. (Section6and11). Thiscloserelationisbetterexpressedincgs-units,whereEandDhavethesamedimension,aswellasBand H. Unfortunately,theGaussian systembelongsto theirrationalones, whereasthe SI-systemisarational one, so thatinconversionsfactors4(cid:25)appear.IwouldhavepreferredtousearationalsystemlikethatofHeavisideand Lorentz. However,intheusualtextbooksonlytheSI-systemandtheGaussianoneareused. Idonotwishto o(cid:11)ertheelectrodynamicsinasystemwhichinpracticeisnotusedinothertextbooks. 8 ABasicEquations B Electrostatics c2003FranzWegnerUniversita¨tHeidelberg (cid:13) 3 Electric Field, Potential, Energy of the Field 3.a Statics First we consider the time-independent problem: Statics. This means, the quantities depend only on their location, (cid:26) = (cid:26)(r), j = j(r), E = E(r), B = B(r). Then the equation of continuity (1.12) and Maxwell’s equations(1.13-1.16)separateintotwogroups divj(r)=0 curlB(r)= 4(cid:25)j(r) divE(r)=4(cid:25)(cid:26)(r) c divB(r)=0 curlE(r)=0 (3.1) magnetostatics electrostatics k = 1j(r) B(r) k =(cid:26)(r)E(r) ma c (cid:2) el The first group of equations contains only the magnetic induction B and the current density j. It describes magnetostatics. ThesecondgroupofequationscontainsonlytheelectricfieldEandthechargedensity(cid:26). Itis thebasisofelectrostatics. Theexpressionsforthecorrespondingpartsoftheforcedensitykisgiveninthelast line. 3.b ElectricFieldand Potential 3.b.(cid:11) ElectricPotential Nowwe introducethe electric Potential (cid:8)(r). For this purposewe consider the path integraloverE along to di(cid:11)erentpaths(1)and(2)fromr tor 0 r r dr E(r)= dr E(r)+ dr E(r); (3.2) r0 (cid:1) r0 (cid:1) (cid:1) Z(1) Z(2) I wherethelastintegralhastobeperformedalongtheclosedpathfromr along(1) 0 torandfromthereinoppositedirectionalong(2)tor .Thislaterintegralcanbe (2) r 0 transformedbymeansofStokes’theorem(B.56)intotheintegral df curlE(r) overtheopensurfaceboundedby(1)and(2),whichvanishesduetoM(cid:1)axwell’s F R equation curlE(r)=0(3.1). r (1) 0 Thereforetheintegral(3.2)isindependentofthepathandonedefinestheelectricpotential r (cid:8)(r)= dr E(r)+(cid:8)(r ): (3.3) 0 (cid:0) (cid:1) Zr0 Thechoiceofr andof(cid:8)(r )isarbitrary,butfixed. Therefore(cid:8)(r)isdefinedapartfromanarbitraryadditive 0 0 constant. Fromthedefinition(3.3)wehave d(cid:8)(r)= dr E(r); E(r)= grad(cid:8)(r): (3.4) (cid:0) (cid:1) (cid:0) 9 10 BElectrostatics 3.b.(cid:12) ElectricFluxandCharge From divE(r)=4(cid:25)(cid:26)(r),(3.1)oneobtains d3rdivE(r)=4(cid:25) d3r(cid:26)(r) (3.5) ZV ZV andthereforewiththedivergencetheorem(B.59) df E(r)=4(cid:25)q(V); (3.6) (cid:1) Z@V idesttheelectricfluxofthefieldEthroughthesurfaceequals4(cid:25)timesthechargeqinthevolumeV. Thishasasimpleapplicationfortheelectricfieldofarotationalinvariantchargedistribution(cid:26)(r) = (cid:26)(r)with r= r.Forreasonsofsymmetrytheelectricfieldpointsinradialdirection,E=E(r)r=r j j r r 4(cid:25)r2E(r)=4(cid:25) (cid:26)(r )r2dr d(cid:10)=(4(cid:25))2 (cid:26)(r )r2dr ; (3.7) 0 0 0 0 0 0 Z0 Z0 sothatoneobtains 4(cid:25) r E(r)= (cid:26)(r )r2dr (3.8) 0 0 0 r2 Z0 forthefield. Asaspecialcaseweconsiderapointchargeintheorigin. Thenonehas q r 4(cid:25)r2E(r)=4(cid:25)q; E(r)= ; E(r)= q: (3.9) r2 r3 Thepotentialdependsonlyonrforreasonsofsymmetry.Thenoneobtains rd(cid:8)(r) grad(cid:8)(r)= = E(r); (3.10) r dr (cid:0) whichafterintegrationyields q (cid:8)(r)= +const. (3.11) r 3.b.(cid:13) PotentialofaChargeDistribution We start outfrom point chargesq at locationsr. The correspondingpotential andthe field is obtainedfrom i i (3.11)und(3.10)byshiftingrbyr i q (cid:8)(r) = i (3.12) r r i i j (cid:0) j X q(r r) E(r) = grad(cid:8)(r)= i (cid:0) i : (3.13) (cid:0) r r 3 Xi j (cid:0) ij We change now from point charges to the charge density (cid:26)(r). To do this we perform the transition from q f(r)= (cid:1)V(cid:26)(r)f(r)to d3r (cid:26)(r)f(r),whichyields i i i i i i 0 0 0 P P R (cid:26)(r) (cid:8)(r)= d3r 0 (3.14) 0 r r Z j (cid:0) 0j FromE= grad(cid:8)and divE=4(cid:25)(cid:26)oneobtainsPoisson’sequation (cid:0) (cid:8)(r)= 4(cid:25)(cid:26)(r): (3.15) 4 (cid:0) Pleasedistinguish = and(cid:1)=Delta. Wecheckeq. (3.15). Firstwedetermine 4 r(cid:1)r r r a (cid:8)(r)= d3r0(cid:26)(r0) 0(cid:0) = d3a(cid:26)(r+a) (3.16) r r r3 a3 Z j 0(cid:0) j Z

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.