ebook img

Chiral spin liquids in triangular lattice SU(N) fermionic Mott insulators with artificial gauge fields PDF

0.51 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Chiral spin liquids in triangular lattice SU(N) fermionic Mott insulators with artificial gauge fields

ChiralspinliquidsintriangularlatticeSU(N)fermionicMottinsulatorswithartificialgaugefields PierreNataf,1 Miklo´sLajko´,2 AlexanderWietek,3 KarloPenc,4,5 Fre´de´ricMila,1 andAndreasM.La¨uchli3 1InstituteofTheoreticalPhysics,EcolePolytechniqueFe´de´raledeLausanne(EPFL),CH-1015Lausanne,Switzerland 2Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan 3Institut fu¨r Theoretische Physik, Universita¨t Innsbruck, A-6020 Innsbruck, Austria 4Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B. 49, Hungary 5DepartmentofPhysics,BudapestUniversityofTechnologyandEconomics,1111Budapest,Hungary (Dated:January6,2016) 6 Weshowthat,inthepresenceofaπ/2artificialgaugefieldperplaquette,Mottinsulatingphasesofultra- 1 coldfermionswithSU(N)symmetryandoneparticlepersitegenericallypossessanextendedchiralphasewith 0 intrinsictopologicalordercharacterizedbyamultipletofN low-lyingsingletexcitationsforperiodicboundary 2 conditions,andbychiraledgestatesdescribedbytheSU(N)1Wess-Zumino-Novikov-Wittenconformalfield theoryforopenboundaryconditions.ThishasbeenachievedbyextensiveexactdiagonalizationsforNbetween n 3and9,andbyapartonconstructionbasedonasetofN Gutzwillerprojectedfermionicwave-functionswith a fluxπ/N pertriangularplaquette.Experimentalimplicationsarebrieflydiscussed. J 5 PACSnumbers:67.85.-d,71.10.Fd,75.10.Jm,02.70.-c ] s a The search for unconventional quantum states of matter istheSU(N)HubbardHamiltonian g in realistic models of strongly correlated systems has been - N t an extremely active field of research over the last 25 years. (cid:88)(cid:88) (cid:88) n H =−t (eφijc† c +H.c.)+U n n (1) Mott insulating phases in which charge degrees of freedom i,α j,α i,α iβ a u aregappedhavebeenarguedtopotentiallyhostseveralfami- (cid:104)i,j(cid:105)α=1 i,α<β q liesofquantumspinliquidsrangingfromResonatingValence where the phases φ are chosen in a such a way that the t. Bond Z2 quantum spin liquids [1–3] to U(1) algebraic spin (gauge-invariant) fluixj through each triangular plaquette is a liquids [4–6] and chiral spin liquids [7–14]. The topological m equal to π/2. Then, at a filling of one particle per site, propertiesofthesephaseshaveattractedalotofattentiondue and for large enough U/t, the effective model is an SU(N) - to their potential impact on the implementation of quantum d Heisenbergmodelwithlocalspinsinthefundamentalrepre- n computers[15]. sentationofSU(N)endowedwithrealpairwisepermutations o and purely imaginary three-site permutations defined by the c [ Coldatomsopennewperspectivesinthatrespect.Inpartic- Hamiltonian[24,25] ular,alkalinerareearthsallowtorealizeSU(N)Mottphases (cid:88) (cid:88) 1 H =J P +K (iP +h.c.) (2) with N as large as 10 [16–19], and if a chiral phase can be ij 3 ijk v 8 stabilized,itslow-energytheoryisexpectedtobetheSU(N) (cid:104)i,j(cid:105) (i,j,k) 5 levelk =1Chern-Simonstheory. Thefirstproposalofachi- wherethesumover(i,j,k)runsoveralltriangularplaquettes, 9 ralphaseinthiscontextgoesbacktotheworkofHermeleetal andP andP arecircularpermutationoperators. Tosec- 0 ij ijk [20,21],whoshowedthatamean-fieldapproachleadstothe 0 ondorder,theamplitudeofthepairwisepermutationissimply stabilizationofchiralphasesonthesquarelatticeinthelimit . givenbyJ = 2t2/U,whilethe3-sitepermutationappearsat 1 oflargeN andlargenumberofparticlespersitemwithN/m 0 third order in perturbation theory with K3 = 6t3/U2 [26]. integer and ≥ 5. The same mean-field applied to SU(6) on 6 In the following, we will discuss the properties of the model the honeycomb lattice with one particle per site has also led 1 (2) as a function of J and K using the parametrization 3 : to the prediction of a chiral state, with a competing plaque- v J = cosθ and K3 = sinθ. We will discuss the experimen- tte state very close in energy [22]. More recently Ref. [23] i talprospectsofrealizingthisHamiltoniantowardstheendof X suggested the stabilization of SU(N) chiral spin liquids on the manuscript. It is interesting to note that parent Hamilto- r thesquarelatticeusingstaticsyntheticgaugefields,basedon a nians for SU(N) chiral spin liquids have been proposed re- aslave-rotormean-fieldapproach. Inallthesescases,there- cently[27,28]. Theyinclude both thetwo-sitepermutations sultscallforfurtherinvestigationwithmethodsthatgobeyond and the imaginary part of the cyclic three-site permutations, mean-fieldtheory. butalsoinadditiontherealpartofthecyclicthree-sitepermu- tations, whichweomit. Therangeofthetermsintheparent In this Letter, we show that the ground state of the Mott Hamiltonians are however not restricted to nearest neighbor phase of N-color fermions on the triangular lattice with one ortheelementarytriangularplaquetteonly,buttheamplitudes particle per site is a SU(N) chiral spin liquid in a large pa- dependinapower-lawfashiononthedistancesamongthetwo rameterrangeifthesystemissubjecttoastaticartificialgauge orthreespins. Whiletherearesomestructuralsimilarities,it fieldwithfluxπ/2pertriangularplaquette. Thestartingpoint isnotobviousthatthespatiallycompactHamiltonian(2)fea- 2 -0.5 1 4 4 SU(3), Ns=21(a) (b) (c) (d) SU(4), Ns=20 SU(5), Ns=25 SU(6), Ns=24 0.9 SU(N) SU(7), Ns=21 -1 SU(8), Ns=24 3 CSL 3 SU(9), Ns=27 E/Ns-1.5 E / EVMCED00..78 SU(N) ∆GS2 Ns=21, SU(3) Ns=24, SUNN(4ss==)2270,, SSUU((34)) 2∆singlet CSL 1 Ns=25, SU(5) SU(N) 1 0.6 Ns=24, SU(8) CSL -2 Ns=24, SU(6) 0 0.1 0.2 0.3 0.4 0.5 0.50 0.1 0.2 0.3 0.4 0.5 00Ns=21,0 S.1U(7) 0.N2s=27, S0U.(39) 0.4 0.5 0 0.1 0.2 0.3 0.4 0.50 θ/π θ/π θ / π θ / π FIG.1. Panel(a):GroundstateenergypersiteasafunctionofθforvariousN andN . Opensymbols(fulllines)denoteED(VMC)results. s (b): QualityoftheVMCwavefunctionasmeasuredbytheratioE /E . (c): EnergysplittingamongtheexpectedN singletstates VMC ED formingthegroundspacemanifoldofaSU(N)chiralspinliquid.(d)Energygapfromthegroundstatetothefirstexcitedsingletstatewhich isnotpartoftheexpectedgroundspacemanifold. turesCSLphases. ItisthegoalofthisLettertoprovidecom- that the small and large θ regimes for all considered N are pellingnumericalevidence,basedonlarge-scaleExactDiag- mostlikelyotherphases,whiletheintermediateregioncould onalizations(ED)andGutzwillerprojectedpartonwavefunc- harbourchiralspinliquids. tions,thattheaboveHeisenbergHamiltonianindeedfeatures SU(N)chiralspinliquidsareintrinsicallytopologicallyor- extendedregionsofSU(N)CSLsforallvaluesofN = 3to dered: Theyexhibitanon-trivialgroundstatedegeneracyon 9consideredhere. thetorus[21]andfractionalexcitations. Thegroundstatede- Exact diagonalizations – We start by investigating finite generacy on the torus is expected to be N for these partic- periodictriangularlatticeclustersasafunctionofθ forvari- ular states with N different abelian anyons [20, 21]. In our ous values of N. We focus on the range θ ∈ [0,π/2] in the numerical simulations, we can detect this degeneracy by in- following. θ > π/2 is likely to be dominated by ferromag- vestigating the low-energy spectrum on samples with a total netism, while θ < 0 yields the time-reversed, but otherwise numberoflatticesitesNs thatisanintegermultipleofN. In identical physics as −θ. For small values of N = 3,4 we Fig. 1(c) we display the energy spread ∆GS of these N ex- usedthestandardEDapproachemployingallthespacegroup pected ground states for different N as a function of θ. As symmetries,whileonlyconsideringtheindividualcolorcon- a general trend we observe that the splitting reduces signifi- servation, corresponding to an abelian subgroup of SU(N). cantly as we increase N. On the other hand several samples ForallotherN arecentlydevelopedEDapproachbytwoof still show a substantial splitting. Naively one would expect the authors [29], exploiting the SU(N) symmetry at the ex- asimpleexponentialsuppressionofthesplittingwithsystem pense ofspatial symmetries, iscurrently the only wayto ad- size,howeverintherelatedcontextoffractionalCherninsula- dress these systems within ED. Depending on N, the largest torsamoresubtledependenceofthegroundspacesplittingon systemsizesN rangefrom21to27latticesites. the actual shape of the clusters has been observed and ratio- s nalized[30]. Wethinkthatsimilarconsiderationsapplyhere InFig.1(a)weplottheEDresultsfortheenergypersiteof aswell. thegroundstateasafunctionofθforallconsideredN (open symbols). WhilethecurvesforN (cid:46) 5lookrathersmoothat Finallywealsomeasurethegap∆singlet fromtheabsolute first sight, it is visible that the energy per site displays kinks groundstatetothefirstsingletlevelthatisnotpartoftheex- aroundθ/π ∼0.05−0.1andatθ/π ∼0.35−0.4forN =6 pectedgroundstatemanifold. Thisisameasurefortheexci- to9. Forcomparisonweplottheenergyexpectationvalueof tationgapinthegappedchiralspinliquidstates. InFig.1(d), parameter-free Gutzwiller projected chiral spin liquid model one observes an approximate dome-shaped behaviour of this wavefunctionsforallvaluesofN (fulllines).Wewilldiscuss gapforallN,andfurthermorethisgapseemstodependonly thepropertiesofthesewavefunctionsinamoment. Interest- weakly on N. The approximate region in θ where the N- ingly, these model wave functions have very competitive en- fold ground state degeneracy splitting is small compared to ergies,especiallyintheθ regionslightlyabovethefirstkink. the excitation gap (for large N) is indicated as a shaded re- ForaquantitativecomparisonweshowinFig.1(b)theratioof gioninallthepanels,andindicatesaroughstabilityregionfor thevariationalenergydividedbytheEDgroundstateenergy. the SU(N) chiral spin liquids on the triangular lattice. One It is impressive that for N beyond 3 the best ratio exceeds shouldnotehoweverthatthepreciseextentofthechiralspin 0.98forthesystemsizesconsidered. Sothepicturesofaris liquidsforsmallN isanopenquestionatthispoint. 3 10 x 3.5 atri m 1 3 p a erl 0.1 S2.5 v G o Eigenvalues of 0.00.000.000111 SSSSSSSUUUUUUU(((((((3456789))))))),,,,,,, NNNNNNNsssssss=======8818891440446008 E - E 01..5521 three-sublattice flavor order S CUS(3L) 1e-05 1 2 3 4 5 6 7 8 9 10 0 index 0 0.1 0.2 0.3 0.4 0.5 θ / π FIG.2. VMCgroundspacedegeneracy: orderedsequenceofeigen- valuesoftheoverlapmatrixofGutzwillerprojectedwavefunctions FIG. 3. Summed squared overlaps of the VMC model wave func- with 30 different values of threaded flux. The overlap matrix has tionswithEDeigenstatesforN =3andN =12.Thebluecrossed s preciselyN largeeigenvaluesforanSU(N)chiralspinliquid. denoteEDeigenstates,whilethediameterofthefilledredcirclesde- notesthetotalsquaredoverlaponthoseeigenstates. Inthebestcase thesummedoverlapsonthelowestthreeEDeigenstates(degeneracy 1+2)accountforover90%ofthetotalweight. Variational parton approach – An appealing way to de- scribetheSU(N)chiralspinliquidsistouseaparton-based mean field approach [20, 21, 31–36], complemented with a at the mean-field level leads to a robust rank-N overlap ma- Gutzwiller projection. The idea is to fractionalize the ele- trix,thereforecorroboratingtheexpectationofanN-foldde- mentary spin degree of freedom into fermionic spinons (par- generate ground state manifold in the thermodynamic limit tons) with N flavors. For an exact description a dynamical alsoattheVMClevel. gauge field needs to enforce the physical constraint of one Since the variational energies for SU(3) turned out not to fermion per site. At the mean-field level however it is suffi- be very competitive, as shown in Fig. 1(a)/(b), we explicitly cienttospecifythebandstructureandfillingofthefermionic calculated the overlaps of individual ED eigenstates of the spinons. In the SU(N) chiral spin liquids of interest here, Hamiltonian (2) with the three orthogonal Gutzwiller wave thespinonbandstructureconsistsofN bands,wherethelow- functionsobtainedonthesamesystemsize. InFig.3weplot est band is completely filled for all N flavors and separated the summed squared overlap of all three wave functions (di- by a gap from the other bands. In addition this band is re- ameteroffilledcircles)withtheEDeigenstates(crosses)asa quiredtohaveChernnumber±1.Forthetriangularlatticewe functionofθ.HereweconsideraN =12sitesystem,where s use a Hofstadter-type tight-binding Hamiltonian with a uni- themomentaofthethreeEDgroundstatesinthechiralspin form flux of π/N per triangular plaquette [37], fulfilling the liquid phase are at the zone center (one) and at the corners requirementsonthebandstructure. Thismean-fieldstatecan of the Brillouin zone (twofold degenerate). Around θ = 0 nowbeturnedintoavalidspinwavefunctionbytheapplica- the SU(3) triangular lattice Heisenberg model is in a three- tionofanexactGutzwillerprojection,enforcingthepresence sublatticeflavororderedstate[41,42],howeverintheregion of exactly one fermionic spinon per site. Such a wave func- around θ/π ∼ 0.25, the three lowest ED eigenstates indeed tioncanbehandledbyVariationalMonteCarlo(VMC)tech- have sizeable overlap with the VMC model wave functions, niques,andinparticularonecaneasilycalculatetheenergyof therebyunderliningthepresenceofanSU(3)chiralspinliq- the Hamiltonian (2) on rather large lattices. The VMC ener- uidforsufficientlylargevaluesofθalsoforN =3. giesdisplayedinFig.1(a),(b)havebeenobtainedthisway. Edge states – Another hallmark of chiral topological ThenextquestionishowtheVMCapproachisabletoac- phasesisthepresenceofchiraledgemodesintheenergyspec- countforthenon-trivialgroundstatedegeneracyonthetorus. trumofsystemswithaboundary. Ithasbeenunderstoodthat Itturnsoutthatbythreadingfluxthroughthenon-contractible thecharacteristicenergylevelstructureoftheedgeexcitations loopsaroundthetorus,oneisabletospananN-dimensional asafunctionofthemomentumalongtheboundaryservesas subspace of Gutzwiller projected wave-functions, with al- a fingerprint of the type of topological order realised in the most identical local properties on finite lattices. From the bulk [43]. The SU(N) CSLs considered here are expected viewpoint of topological order this corresponds to a charge to exhibit a chiral edge energy spectrum described by the pumping procedure, where one cycles through the N differ- SU(N) Wess-Zumino-Novikov-Witten(WZNW)conformal 1 entgroundstatesbythreadingdifferentanyonicfluxthrough fieldtheory(CFT)[21].ThisisthesameCFTthatgovernsthe the interior of the torus. These concepts have recently been low-energyspectrumofwell-studiedone-dimensionalcritical exploredinthecontextofSU(2)CSLonseverallattices[38– SU(N)spinchains[27,28,44,45]. 40]. We have checked in Fig. 2 that the subspace of wave Inordertotestthishypothesisnumerically, onehastode- functionsspannedbyusing30differentboundaryconditions sign a setup where one can detect the edge modes in a clean 4 SU(3) SU(4) SU(5) SU(6) SU(7) SU(8) Ns=7 Ns=13 Ns=15 NN=s=1199 168 C6 C6 C7 sC6 x2 224 x2 56 15 3 20 21 168 4 490 45 6 3 20 224 56 3 6 5 120 735 2800 6 36 50 21 168 56 20 4 45 47505 6 218604 224 2281 56 550044 4 5 84 84 2281 504 1008 3 4 5 6 21 56 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 l-l l-l l-l l-l l-l l-l 0 0 0 0 0 0 FIG. 4. Edge states in SU(N) chiral spin liquids: the leftmost panel displays the N = 19 sites triangular cluster with open boundary s conditionsused.Inthevariousotherpanelsweexhibitthelowenergyspectrumasafunctionoftheangularmomentumaroundthecentralsite (l denotesthegroundstateangularmomentum). Thechiraledgestatesareclearlyvisible,withacharacteristicSU(N)multipletstructure, 0 whichcorrespondstoaparticularsectorofachiralSU(N) Wess-Zumino-Novikov-Wittenconformalfieldtheory.Theanalyticalpredictions 1 areindicatedbythedimensionsoftheSU(N)multipletsandcanbefoundinTab.Iofthesupplementarymaterial. way. Startingfromatorusanaturalwaywouldbetocutthe summarytheanalysisofthestructureoftheedgeexcitations torus open into a cylinder. This geometry however has two performed here confirms the SU(N) WZNW CFT predic- 1 independent,counter-propagatingedges,makingacleananal- tionsandthusstrengthensthecaseforabelianSU(N)chiral ysisdifficult,giventhesystemsizesN accessibletoED.We spinliquidsinthemodelHamiltonian(2). s therefore choose to emulate a disk geometry by considering Experimental considerations – With the recent realiza- thespecificN =19sitetriangularlatticewithopenboundary s tion of the Mott-crossover regime in 3D optical lattices with conditions depicted in the left panel of Fig. 4. Such a lattice fermionicYtterbiumatoms[46,47]theprospectforthereal- might actually be built in future ultracold atom experiments izationofstronglycorrelatedSU(N)quantummagnetismis withopticallatticesandatightconfiningpotential. Thissam- becoming bright. Our proposal for triangular lattices builds plestillhasasixfoldrotationaxisaboutthecentralsite,yield- oningredientswhichhavebeendemonstratedseparately: the inganangularmomentumquantumnumberwhichweuseto possibility to realize Mott insulators in optical lattices, and plottheenergyspectrum.Theenergyspectrumofthedischas to create static artificial gauge fields in an optical lattice (for no topological ground state degeneracy, but features gapless alkaline atoms) [48, 49]. Beside, working with the triangu- edge modes whichtypically propagate only inone direction. lar lattice is a big advantage because the 3-site permutation Theprecisemultipletstructureoftheedgemodesdependson term is the first and only term to appear to third order per- theanyonicsector. Inoursetupthissectorcanbesimplyla- turbation theory starting from the Hubbard model with one beled as a = (N mod N). In Tab. I of the supplementary s particlepersite,bycontrasttoe.g. thesquareandhoneycomb materialwehavecompiledtheSU(N) WZNWCFTpredic- 1 lattice, where they appear at order 4 and 6 respectively, and tions for the different irreducible representations of SU(N) are not the first corrections. The chiral phase typically ap- which appear at a given excitation energy, here qualitatively pears for θ (cid:39) 0.3, which, using the perturbation expressions labeledbytheexcessangularmomentuml−l0.Intheremain- ofJ =2t2/U andK =6t3/U2,correspondstot/U (cid:39)0.1. 3 ingpanelsofFig.4wedisplaytheactualEDenergyspectrum This might besmall enough to be still inthe Mott insulating of the Hamiltonian (2) for a fixed value of θ/π = 0.25 for phase, and to ensure that higher order corrections are negli- N =3upto8asafunctionoftheangularmomentuml−l . 0 gible. Infuturestudiesonemightalsorelaxtheπ/2fluxper For all N one can clearly identify a branch of chiral excita- plaquette condition, and explore the extent of the expected tions propagating to the right. The analytical predictions are stabilityregionoftheSU(N)CSLphases. indicated by the dimensions of the SU(N) irreducible rep- Several interesting questions need to be addressed in fu- resentations. For all N the numerical data for the first three turework. Forexample,isitpossibletodirectlyengineerthe sectors(l−l =0,1,2)isinfullagreementwiththeanalyti- 0 required three site exchange terms in Hamiltonian (2) using calpredictions.Thesplittingbetweenthemultipletsatagiven sophisticatedquantumopticsschemes? Thereishopethatthe valueoflisexpectedtovanishasN grows,andthespectrum s current activity on lattice gauge-theory implementations will should become linear with a certain edge state velocity. In bringtechniquestoaddressthisquestion. Anotherintriguing 5 question regards the detection of SU(N) chiral spin liquid [27] H.-H.Tu,A.E.Nielsen, andG.Sierra,NuclearPhysicsB886, edgestatesinactualexperiments,forexampleusingspectro- 328 (2014). scopictechniquesforsmalldroplets,orbraidingprotocolsfor [28] R.BondesanandT.Quella,NuclearPhysicsB886,483 (2014). [29] P.NatafandF.Mila,Phys.Rev.Lett.113,127204(2014). theabeliananyons[21]. [30] A.M.La¨uchli,Z.Liu,E.J.Bergholtz, andR.Moessner,Phys. The authors acknowledge P. Corboz, M. Hermele, Rev.Lett.111,126802(2013). T.Quella,A.Sterdyniak,H.-H.TuandHongyuYangforuse- [31] G.Baskaran,Z.Zou, andP.Anderson,SolidStateCommuni- ful discussions. This work has been supported by the Swiss cations63,973 (1987). National Science Foundation, the JSPS KAKENHI Grant [32] G. Baskaranand P.W. Anderson,Physical ReviewB 37, 580 (1988). Number2503802,theHungarianOTKAGrantNo. K106047 [33] I.Affleck,Z.Zou,T.Hsu, andP.W.Anderson,Phys.Rev.B and by the Austrian Science Fund FWF (F-4018-N23 and I- 38,745(1988). 1310-N27/DFG-FOR1807). [34] E.Dagotto,E.Fradkin, andA.Moreo,Phys.Rev.B38,2926 (1988). [35] X.-G.WenandP.A.Lee,Phys.Rev.Lett.76,503(1996). [36] T.SenthilandM.P.Fisher,PhysicalReviewB62,7850(2000). [37] Note that at this stage the flux per plaquette is unrelated to [1] D. S. Rokhsar and S. A. Kivelson, Phys. Rev. Lett. 61, 2376 thefluxperplaquetteintheoriginalFermi-HubbardHamilto- (1988). nian(1). [2] R.MoessnerandS.L.Sondhi,Phys.Rev.Lett.86,1881(2001). [38] Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B 84, [3] A.Ralko,M.Ferrero,F.Becca,D.Ivanov, andF.Mila,Phys. 075128(2011). Rev.B71,224109(2005). [39] H.-H. Tu, Y. Zhang, and X.-L. Qi, Phys. Rev. B 88, 195412 [4] I.AffleckandJ.B.Marston,Phys.Rev.B37,3774(1988). (2013). [5] Y.Ran,M.Hermele,P.A.Lee, andX.-G.Wen,Phys.Rev.Lett. [40] A.Wietek,A.Sterdyniak, andA.M.La¨uchli,Phys.Rev.B92, 98,117205(2007). 125122(2015). [6] P. Corboz, M. Lajko´, A. M. La¨uchli, K. Penc, and F. Mila, [41] A.La¨uchli,F.Mila, andK.Penc,Phys.Rev.Lett.97,087205 Phys.Rev.X2,041013(2012). (2006). [7] V. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095 [42] B. Bauer, P. Corboz, A. M. La¨uchli, L. Messio, K. Penc, (1987). M.Troyer, andF.Mila,Phys.Rev.B85,125116(2012). [8] X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 [43] X.G.Wen,QuantumFieldTheoryofMany-BodySystems:FromtheOriginofSoundtoanOriginofLightandElectrons (1989). (OxfordUniv.Press,Oxford,2004). [9] X.G.Wen,Phys.Rev.B40,7387(1989). [44] B.Sutherland,PhysicalReviewB12,3795(1975). [10] D.F.Schroeter, E.Kapit, R.Thomale, andM.Greiter,Phys. [45] I.Affleck,NuclearPhysicsB265,409 (1986). Rev.Lett.99,097202(2007). [46] S.Taie,R.Yamazaki,S.Sugawa, andY.Takahashi,NatPhys [11] L. Messio, B. Bernu, and C. Lhuillier, Phys. Rev. Lett. 108, 8,825(2012). 207204(2012). [47] C. Hofrichter, L. Riegger, F. Scazza, M. Ho¨fer, D. R. Fer- [12] Y.-C. He, D. N. Sheng, and Y. Chen, Phys. Rev. Lett. 112, nandes, I. Bloch, and S. Fo¨lling, ArXiv e-prints (2015), 137202(2014). arXiv:1511.07287. [13] S.-S.Gong,W.Zhu, andD.N.Sheng,Sci.Rep.4(2014). [48] M.Aidelsburger,M.Atala,M.Lohse,J.T.Barreiro,B.Paredes, [14] B.Bauer,L.Cincio,B.P.Keller,M.Dolfi,G.Vidal,S.Trebst, andI.Bloch,Phys.Rev.Lett.111,185301(2013). andA.W.W.Ludwig,NatCommun5(2014). [49] H.Miyake,G.A.Siviloglou,C.J.Kennedy,W.C.Burton, and [15] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and W.Ketterle,Phys.Rev.Lett.111,185302(2013). S.DasSarma,Rev.Mod.Phys.80,1083(2008). [16] A.V.Gorshkov,M.Hermele,V.Gurarie,C.Xu,P.S.Julienne, J.Ye,P.Zoller,E.Demler,M.D.Lukin, andA.M.Rey,Nat Phys6,289(2010). [17] F. Scazza, C. Hofrichter, M. Ho¨fer, P. C. De Groot, I. Bloch, andS.Fo¨lling,NaturePhysics (2014),10.1038/nphys3061. [18] G.Pagano,M.Mancini,G.Cappellini,P.Lombardi,F.Scha¨fer, H.Hu,X.-J.Liu,J.Catani,C.Sias,M.Inguscio, andL.Fallani, NaturePhysics10,198(2014). [19] X. Zhang, M. Bishof, S. L. Bromley, C. V. Kraus, M. S. Safronova,P.Zoller,a.M.Rey, andJ.Ye,Science(NewYork, N.Y.),1(2014). [20] M.Hermele,V.Gurarie, andA.M.Rey,Phys.Rev.Lett.103, 135301(2009). [21] M.HermeleandV.Gurarie,Phys.Rev.B84,174441(2011). [22] G.Szirmai,E.Szirmai,A.Zamora, andM.Lewenstein,Phys. Rev.A84,011611(2011). [23] G.Chen,K.R.A.Hazzard,A.M.Rey, andM.Hermele,ArXiv e-prints (2015),arXiv:1501.04086. [24] O.I.Motrunich,Phys.Rev.B73,155115(2006). [25] D.SenandR.Chitra,Phys.Rev.B51,1922(1995). [26] H.-H.Lai,Phys.Rev.B87,205131(2013). 6 NinSU(N) N mod N l=0 l=1 l=2 s 2 1 (2) ⊕ (4) 3 1 (3) ⊕ (¯6) 2× ⊕ ⊕ (15) 4 3 (¯4) ⊕ (20) 2× ⊕2× ⊕ (3¯6) 5 4 (¯5) ⊕ (45) 2× ⊕2× ⊕ (50)⊕ (7¯0) 6 1 (6) ⊕ (8¯4) 2× ⊕2× ⊕ (120)⊕ (21¯0) 7 5 (2¯1) ⊕ (2¯8)⊕ (224) 3× ⊕ ⊕2× ⊕ (490)⊕ (73¯5) 8 3 (56) ⊕ (168)⊕ (5¯04) 3× ⊕2× ⊕2× ⊕ (10¯08)⊕ (2800) 9 1 (9) ⊕ (3¯15) 2× ⊕2× ⊕ (396)⊕ (27¯00) TABLEI. ThethreefirstangularmomentumsectorsofthechiraledgemodeoftheN =19dropletforSU(N) .Thenumber(N mod N) s 1 s selectstheanyonicsector(primaryfieldoftheCFT)whichconsequentlydeterminestheedgespectrum. 7 SUPPLEMENTARYMATERIAL variantcombinationofN −1LuttingerliquidCFTs(thusthe SU(N) WZNWCFTcentralchargec=N −1). 1 SU(N) WZWNpredictionsforthechiraledgestates 1 InTab.IweexplicitlylisttheexpectedSU(N)irreducible SU(N) countingrule OEISidentifier representationswiththeirmultiplicityforthefirstthreeexci- SU(2) 1,1,2,3,... A000041 tationlevelsl = 0(primaryfield)andl = 1,2(firsttwode- SU(3) 1,2,5,10,... A000712 scendantlevels)ofachiralSU(N) WZNWconformalfield 1 SU(4) 1,3,9,22,... A000716 theory. TheprimaryfieldforeachN isdictatedbytheopen SU(5) 1,4,14,40,... A023003 boundaryclusterssizeN =19viathelength(N mod N) s s SU(6) 1,5,20,65,... A023004 of the single-column young diagram at l = 0. We have de- SU(7) 1,6,27,98,... A023005 rived these results using a successive SU(N) coupling se- SU(8) 1,7,35,140,... A023006 quence with the adjoint representation starting from the irre- duciblerepresentationatl=0andsubsequentthenull-vector SU(9) 1,8,44,192,... A023007 elimination based on the SU(N) counting rule restrictions SU(10) 1,9,54,255,... A023008 listed in Tab. II. This simplified procedure uses the fact that TABLEII.SU(N)countingrulesusedtoderivetheresultsinTab.I. the SU(N) CFT can also be seen as particular SU(N) in- 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.