Topics in Organometallic Chemistry 62 Koichi Mikami Editor Chiral Lewis Acids 62 Topics in Organometallic Chemistry Editorial Board M. Beller, Rostock, Germany P.H. Dixneuf, Rennes CX, France J. Dupont, Porto Alegre, Brazil A. Fu¨rstner, Mu¨lheim, Germany F. Glorius, Mu¨nster, Germany L.J. Gooßen, Kaiserslautern, Germany T. Ikariya, Tokyo, Japan S.P. Nolan, Ghent, Belgium J. Okuda, Aachen, Germany L.A. Oro, Zaragoza, Spain M. Willis, Oxford, United Kingdom Q.-L. Zhou, Tianjin, China Aims and Scope TheseriesTopicsinOrganometallicChemistrypresentscriticaloverviewsofresearch resultsinorganometallicchemistry.Asourunderstandingoforganometallicstructure, properties and mechanisms increases, new ways are opened for the design of organometalliccompoundsandreactionstailoredtotheneedsofsuchdiverseareasas organicsynthesis,medicalresearch,biologyandmaterialsscience.Thusthescopeof coverage includes a broad range of topics of pure and applied organometallic chemistry,wherenewbreakthroughsarebeingachievedthatareofsignificancetoa largerscientificaudience. TheindividualvolumesofTopicsinOrganometallicChemistryarethematic.Review articles are generally invited by the volume editors. All chapters from Topics in Organometallic Chemistry are published OnlineFirst with an individual DOI. Inreferences,TopicsinOrganometallicChemistryisabbreviatedasTopOrganomet Chemandcitedasajournal. Moreinformationaboutthisseriesathttp://www.springer.com/series/3418 Koichi Mikami Editor Chiral Lewis Acids With contributions by (cid:1) (cid:1) (cid:1) (cid:1) (cid:1) M. Brill Y. Deng M. P. Doyle X. Feng M. Hatano (cid:1) (cid:1) (cid:1) (cid:1) K. Ishihara S. Kobayashi N. Kumagai X. Liu (cid:1) (cid:1) (cid:1) (cid:1) S. P. Nolan J. Paradies Q. Sha M. Shibasaki (cid:1) (cid:1) T. Tsubogo Z. Wang Y. Yamashita Editor KoichiMikami DepartmentofChemicalScienceandEngineering SchoolofMaterialsandChemicalTechnology TokyoInstituteofTechnology Tokyo,Japan ISSN1436-6002 ISSN1616-8534 (electronic) TopicsinOrganometallicChemistry ISBN978-3-319-70804-1 ISBN978-3-319-70806-5 (eBook) https://doi.org/10.1007/978-3-319-70806-5 LibraryofCongressControlNumber:2018931901 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthis book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinor for anyerrors oromissionsthat may havebeenmade. Thepublisher remainsneutralwith regardtojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface I write this preface after the announcement of the 2017 Nobel Prize in Chemistry with the belief that within this book titled “Chiral Lewis Acid Catalyses” there are several candidates who could be considered for the distinguished title of NobelLaureateinchemistry. The Nobel Prize in Chemistry in the early twenty-first century was awarded to Professors Noyori and Sharpless, and Dr. Knowles for their work on “Asymmetric Catalyses” of functional group interconversion such as oxidation and hydrogenation. However, one of the most important processes in organic synthesis,namelythe“AsymmetricCatalysesofCarbon-CarbonBondFormation”, hasyettoberecognisedbytheawardoftheNobelPrize. Chiral Lewis acid catalysts work so well in the main body of carbon-carbon bond forming reactions such as the Mukaiyama aldol reaction, Friedel-Crafts reaction, Diels-Alder reaction, and Alder-ene reaction. The Lewis acid catalysts can increase the regioselectivity, stereoselectivity, and particularly enantios- electivity of these reactions in addition to accelerating the reaction rate. In this context, the principles and design concepts of Chiral Lewis Acid Catalysts are extensively covered in the chapter “The Future of Catalysis by Chiral Lewis Acids”. Particularly, proof of concept in ligand design is exemplified in a showcase of peptide ligands for heterobimetallic catalyses (chapter “Chiral Bimetallic Lewis Acids”). Quite recent progress in chiral Brønsted acid catalysts (chapter “Chiral Carbophilic Gold Lewis Acid Complexes in Enantioselective Catalysis”) and chiral metallic Lewis acid catalysts (chapters “Brønsted Acid/ Lewis Base Hybrid Complexes”, “Chiral Alkaline Earth Metal Complexes in Asymmetric Catalysis” and “Chiral Lewis Acid Rare-Earth Metal Complexes in EnantioselectiveCatalysis”)oftheconjugatedbasesisalsodiscussedinthisbook. GoldrushincarbophilicgoldLewisacidcatalysts(chapter“BrønstedAcid/Lewis Base Hybrid Complexes”) is thus highlighted. Practical applications of alkaline (earth)(chapter“ChiralAlkalineEarthMetalComplexesinAsymmetricCatalysis”) and lanthanide (chapter “Chiral Lewis Acid Rare-Earth Metal Complexes in v vi Preface Enantioselective Catalysis”) catalysts are fully covered by the specialists. Finally inthechapter“ChiralBorane-BasedLewisAcidsforMetalFreeHydrogenations” the future direction of “frustrated” Lewis acid/base pair catalysts is foreseen in asymmetriccatalyses. Withthisinminditismybeliefthatcontinuingprogress inthisfieldof“Chiral Lewis Acid Catalysis” will be rewarded with the Nobel Prize in Chemistry in the nearfuture. Tokyo,Japan KoichiMikami Contents TheFutureofCatalysisbyChiralLewisAcids. . . . . . . . . . . . . . . . . . 1 QiangSha,YongmingDeng,andMichaelP.Doyle ChiralBimetallicLewisAcids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 MasakatsuShibasakiandNaoyaKumagai ChiralCarbophilicGoldLewisAcidComplexesinEnantioselective Catalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 MarcelBrillandStevenP.Nolan BrønstedAcid/LewisBaseHybridComplexes. . . . . . . . . . . . . . . . . . . 91 ManabuHatanoandKazuakiIshihara ChiralAlkalineEarthMetalComplexesinAsymmetricCatalysis. . . . 121 YasuhiroYamashita,TetsuTsubogo,andSh(cid:1)uKobayashi ChiralLewisAcidRare-EarthMetalComplexesinEnantioselective Catalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 XiaomingFeng,ZhenWang,andXiaohuaLiu ChiralBorane-BasedLewisAcidsforMetalFreeHydrogenations. . . 193 JanParadies Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 vii TopOrganometChem(2018)62:1–26 DOI:10.1007/3418_2015_141 #SpringerInternationalPublishingSwitzerland2015 Publishedonline:12August2015 The Future of Catalysis by Chiral Lewis Acids QiangSha,YongmingDeng,andMichaelP.Doyle Abstract Even with the rapidly expanding popularity of organocatalysts for organic reactions, chiral metal-based Lewis acid catalysts continue to have a uniquely important role in asymmetric reactions. Their broad applicability to cycloadditionandcondensationreactionsbasedoncloseencounteredassociations ofLewisbasereactantswiththesechiralLewisacidcatalystsprovidesarchitectur- allyconfinedcomplexesthatprovidehighstereocontrolintheirchemicalreactions. Keywords Chiral ligands (cid:1) Condensation (cid:1) Cycloaddition (cid:1) Dipoles (cid:1) Enantioselectivity(cid:1)Inhibition(cid:1)Transitionmetalcomplexes Contents 1 Introduction................................................................................... 2 2 MetalComplexesasChiralLewisAcidCatalysts.......................................... 3 3 CycloadditionReactions..................................................................... 5 3.1 Diels–AlderReactions................................................................. 5 3.2 Hetero-Diels–AlderReactions......................................................... 7 3.3 DipolarCycloadditionReactions...................................................... 9 4 Carbonyl–EneReaction...................................................................... 15 Q.Sha SchoolofChemicalEngineering,NanjingUniversityofScienceandTechnology, Nanjing210094,People’sRepublicofChina DepartmentofChemistry,TheUniversityofTexasatSanAntonio,SanAntonio,TX78230, USA Y.DengandM.P.Doyle(*) DepartmentofChemistry,TheUniversityofTexasatSanAntonio,SanAntonio,TX78230, USA e-mail:[email protected] 2 Q.Shaetal. 5 CondensationReactions...................................................................... 17 5.1 AldolReactions........................................................................ 17 5.2 MannichReactions..................................................................... 18 5.3 MichaelReactions...................................................................... 18 5.4 Friedel–CraftsReactions............................................................... 20 References........................................................................................ 21 1 Introduction AchiralLewisacidisacoordinativelyunsaturatedspeciesthatisnotsuperimpos- able with its mirror image. With chiral ligand-associated complexes of aluminum andboron,andmorecommonlyoftransitionmetalsthatincludecopper,palladium, gold,iron,rhodium,silver,titanium,andzinc,theapplicationsofchiralLewisacids as catalysts provide directional activation to a reactant intended to produce a stereoisomeric product (Scheme 1). The outcome is usually enantiomeric enrich- ment(withachiralreactants)ordiastereomericenrichment (withchiralreactants). However,althoughthedevelopmentofeffectivechiralLewisacidsforasymmetric catalysishas beenlongstanding,highstereocontrolinselectedreactionshasbeen achievedonlyduringthepastquartercentury[1]. Acid catalysis is the driving force for the vast majority of organic chemical reactions, and the reactions that are most susceptible to acid catalysis are those whoserateisdependentonthepolarityofthesubstrate(s).Theacidthatisselected operates as a proton donor (Brønsted acid) or an electron-pair acceptor (Lewis acid), and the specific reaction dictates what the optimum choice will be. This chapter will focus on Lewis acid catalysis to the exclusion of Brønsted acid catalysis (organocatalysis) and will overview recent directions that point to the future.TheadvantagesofLewisacidsincludetheirstructurallywell-definedligand coordinationaroundthecentralmetal[2].Lewisacid-catalyzedreactionsconstitute anenormityofchemicaltransformations,andtheyarewellreviewedinthisvolume and elsewhere. This chapter is selective in its examples which are chosen to illustrate the broad spectrum of applications by chiral Lewis acid catalysis with focusonrecentdevelopmentsandcurrentchallenges. Scheme1 CatalysisoforganicreactionsbychiralLewisacids
Description: