ebook img

Characterisation and Applications of Aerodynamic Torques on Satellites PDF

215 Pages·2017·9.58 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Characterisation and Applications of Aerodynamic Torques on Satellites

CHARACTERISATION AND APPLICATIONS OF AERODYNAMIC TORQUES ON SATELLITES A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2017 David Mostaza-Prieto School of Mechanical, Aerospace and Civil Engineering Contents List of Tables 6 List of Figures 7 Nomenclature 15 Acronyms 18 Abstract 19 Declaration 20 Copyright Statement 21 Acknowledgements 22 Dedication 23 1 Introduction 24 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2 Scope and research objectives . . . . . . . . . . . . . . . . . . . . . . . 28 1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.5 List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 Spacecraft Drag Modelling 35 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2 Characterising the environment . . . . . . . . . . . . . . . . . . . . . . 37 2.2.1 Free molecular flow . . . . . . . . . . . . . . . . . . . . . . . . . 40 2 2.3 Interaction between the body and the flow . . . . . . . . . . . . . . . . 44 2.3.1 Maxwell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3.2 Schamberg Model . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3.3 Schaaf and Chambre model . . . . . . . . . . . . . . . . . . . . 49 2.3.4 Angular Distribution and Accommodation Coefficient in Space Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 Solving the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.1 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 Numeric modelling of free molecular flow interactions 60 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Calculation of free molecular flow aerodynamics . . . . . . . . . . . . . 62 3.2.1 Free molecular flow models . . . . . . . . . . . . . . . . . . . . . 65 3.2.2 Calculation of equation parameters . . . . . . . . . . . . . . . . 74 3.2.3 Shadow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.1 Outputs and post-processing . . . . . . . . . . . . . . . . . . . . 79 3.3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.3 Study case: QB50 free molecular flow aerodynamic database . . 82 4 Methodology to analyse attitude stability of satellites subjected to aerodynamic torques 91 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 Rotational equations of motion . . . . . . . . . . . . . . . . . . . . . . 93 4.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.1 Pitch stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3.2 Roll-yaw stability . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4 Stability derivatives in free molecular flow . . . . . . . . . . . . . . . . 104 4.5 Time domain response . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.5.1 Pitch axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.5.2 Roll-yaw axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.6 Stability with varying dynamic pressure . . . . . . . . . . . . . . . . . . 115 3 5 Momentum dumping by means of aerodynamic torques 122 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2 Momentum exchange capacity of the atmosphere . . . . . . . . . . . . . 123 5.3 Dumping momentum using aerodynamic torques . . . . . . . . . . . . . 127 5.3.1 Body “fixed” solar arrays . . . . . . . . . . . . . . . . . . . . . . 130 5.3.2 Coupling with pitch axis and momentum dumping . . . . . . . . 139 5.3.3 Sun-tracking solar arrays . . . . . . . . . . . . . . . . . . . . . . 141 5.4 Associated drag increment . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.4.1 Body “fixed” solar arrays associated drag . . . . . . . . . . . . . 147 5.4.2 Sun-tracking solar arrays associated drag . . . . . . . . . . . . . 150 6 Perigee attitude manoeuvres of geostationary satellites during elec- tric orbit raising 153 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.2.1 Environmental torques . . . . . . . . . . . . . . . . . . . . . . . 158 6.3 Optimal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.4.1 Fixed array rotation . . . . . . . . . . . . . . . . . . . . . . . . 169 6.4.2 Optimum solar array rotation . . . . . . . . . . . . . . . . . . . 169 7 Conclusions 176 7.0.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.0.2 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.0.3 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.0.4 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.0.5 Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Bibliography 183 A Numeric Drag Modelling: supplementary material 200 A.1 Barycenter coordinates and point inside a triangle . . . . . . . . . . . . 200 A.2 Shadow analysis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 204 4 B Rotational equations of motion 208 B.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.1.1 Inertial Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.1.2 Orbital Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 B.1.3 Body Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.1.4 Wind Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 B.2 Linearised rotational equations of motion . . . . . . . . . . . . . . . . . 210 C Gauss Pseudospectral Method 213 5 List of Tables 3.1 Gas-surface interaction models . . . . . . . . . . . . . . . . . . . . . . . 66 3.2 Variables stored in the individual result file . . . . . . . . . . . . . . . . 79 4.1 Sufficient conditions for stability . . . . . . . . . . . . . . . . . . . . . . 104 4.2 Center of gravity position and estimated C . . . . . . . . . . . . . . 111 mα 5.1 Typical ∆V to maintain altitude . . . . . . . . . . . . . . . . . . . . . 150 6.1 Satellite geometric properties . . . . . . . . . . . . . . . . . . . . . . . 159 6.2 Initial orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.3 Satellite actuator properties . . . . . . . . . . . . . . . . . . . . . . . . 166 6.4 Boundary values of the problem . . . . . . . . . . . . . . . . . . . . . . 167 6 List of Figures 1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.1 Variation of the mean atmospheric density with altitude for low, mod- erate and high solar and geomagnetic activities as defined by JB2006 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2 VariationoftheEarth’satmosphericcompositionwithaltitudeasdefined by NRLMSISE00 model . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Molecular mean free path (λ) . . . . . . . . . . . . . . . . . . . . . . . 41 2.4 Knudsen number variation with altitude for low, moderate and high solar and geomagnetic activities using NRLMSISE-00, and a characteristic dimension of 1 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 Classification of flow regimes using Knudsen number . . . . . . . . . . 42 2.6 Hyperthermal (s → ∞) and hypothermal (s << ∞) flows . . . . . . . . 43 2.7 Impact on parallel surface due to random thermal motion of the flow molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.8 Incident and reflected fluxes on a convex element of area . . . . . . . . 44 2.9 Specular and diffuse reflected fluxes . . . . . . . . . . . . . . . . . . . . 47 2.10 Schamberg’s GSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.11 Schematic of the main environmental factors affecting accommodation coefficient and angular distribution in low earth orbit . . . . . . . . . . 50 2.12 Uncertainties in drag coefficient caused by quasi-specular remission . . 51 2.13 Schamberg’s quasi-specular and quasi diffuse drag coefficients for simple geometries (based on projected area) . . . . . . . . . . . . . . . . . . . 53 2.14 Comparison of existing computational approaches to spacecraft aerody- namics in low earth orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7 2.15 Surface Shielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.16 The importance of multiple reflections. If reflected molecules are ignored both surfaces will have the same force acting upon them. In reality, surface B will have less force exerted on it . . . . . . . . . . . . . . . . 59 3.1 Sample of an OBJ file . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.2 Geometric, body and wind frames for an imported surface mesh . . . . 63 3.3 Two limiting cases, specular and full accommodated diffuse, using the Schaaf and Chambre flat plate model. Equation parameters, s = 7, T = 300K, T = 1000K . . . . . . . . . . . . . . . . . . . . . . . . . 67 w inf 3.4 Sentman diffuse flat plate model for different accommodation coefficients, α . Equation parameters, s = 8, T = 300K, T = 1000K . . . . . . 70 acc w inf 3.5 Sentman diffuse flat plate model for different speed ratios. Equation parameters, α = 0 8, T = 300K, T = 1000K . . . . . . . . . . . . 71 acc w inf 3.6 Comparison between Sentman and Cook models for low (left) and high (right) speed ratios. Equation parameters, α = 0 8, T = 300K, acc w T = 1000K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 inf 3.7 Schamberg quasi-specular model. For values of ν = 1 and α = 0 the acc not accommodated specular model of Schaaf and Chambre is obtained. Goodman curves uses ν = 2 212, φ = 25 degrees and the Goodman 0 model for α with µ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 73 acc 3.8 Temperature and mean molecular mass for low, mean and high solar activities using NRLMSISE-00 . . . . . . . . . . . . . . . . . . . . . . . 74 3.9 Co-rotating speed ratio assuming a circular orbit for low, mean and high solar activities using NRLMSISE-00 . . . . . . . . . . . . . . . . . . . . 76 3.10 Shadow analysis. Forward-facing panes G and back-facing panels G . 77 1 2 3.11 Change of sign in triangles containing the origin. Triangle 1 has two sign changes in z and y. Triangle 2 has only one in z, so it does not contain the origin. Triangle 3 has also two changes, but does not contain the origin; the condition is necessary but not sufficient. . . . . . . . . . . . 78 3.12 Shadow patterns at different angles of attack . . . . . . . . . . . . . . . 78 3.13 Plots of pressure (left) and shear stress (right) surface distributions . . 80 8 3.14 Drag coefficient for a sphere, the numeric solution converges towards the exact solution as the order of the surface mesh increases . . . . . . 81 3.15 Drag de-orbit device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.16 DDD: Force coefficient in x and z-body direction . . . . . . . . . . . . . 82 3.17 Surface mesh representing the cubesat geometry for FMF calculations . 83 3.18 Variation of QB50 drag and lift coefficients with angle of attack and sideslip. Sentman model with reference parameters, α = 0 8, s = 8, acc T = 300K and T = 1000K . . . . . . . . . . . . . . . . . . . . . . . 84 w inf 3.19 Variation of QB50 pitch moment coefficient with angle of attack and sideslip. Sentman model with reference parameters, α = 0 8, s = 8, acc T = 300K and T = 1000K . . . . . . . . . . . . . . . . . . . . . . . 84 w inf 3.20 Effect of shadowed regions in drag (a-c) and moment (b-d) coefficients. For small β the contributions of shadowed parts remains small (top), as β increases the shadowed regions also increase. . . . . . . . . . . . . . . 86 3.21 Pressure distribution for α = 40 deg and β = 20 deg. Shadowed regions appear as areas with c = 0 . . . . . . . . . . . . . . . . . . . . . . . . 87 p 3.22 Evolution of drag coefficient at zero angles of incidence with altitude and speed ratio for low, mean and high solar activities using NRLMSISE-00 87 3.23 Evolution of pitch moment coefficient at α = 10 deg with altitude and speed ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.24 Evolution of drag and lift coefficients at zero angles of incidence with different positions of the right (δ ) and left (δ ) flaps . . . . . . . . . . 89 1 2 3.25 Evolution of roll, pitch and yaw moment coefficients at zero angles of incidence with different positions of the right (δ ) and left (δ ) flaps . . 89 1 2 4.1 Variation of C and C with angle of attack (α) and sideslip (β). Co- m l efficients calculated with ADBSat using Sentman’s model, S = ref 0 12857m2, L = 0 28m. . . . . . . . . . . . . . . . . . . . . . . . . . 96 ref 4.2 Variation of C and C with sideslip (β) and angle of attack (α). Co- l n efficients calculated with ADBSat using Sentman’s model, S = ref 0 12857m2, L = 0 28m. . . . . . . . . . . . . . . . . . . . . . . . . . 97 ref 4.3 For small angles, relationship between angle of attack (α), pitch (θ) and δ (left) and sideslip (β), yaw (ψ) and δ (right) . . . . . . . . . . . . . 97 1 2 9 4.4 Conditions I, II and III (Eqs. 4.35 to 4.37) for U C = 0. The regions 1 n β where the values of σ and σ satisfy the three of them are represented x z in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.5 Variation of the conditions I, II and III (Eqs. 4.35 to 4.37) for positive and and negative values of C (bold lines correspond to U C = 0). n 1 n β β Notice that the vertical boundary of condition II (σ = 0) is not affected. 101 x 4.6 Variation of the the stability boundary of the pitch condition in the σ −σ plane for positive and negative values of C . The grey area x z mα represents those values of σ and σ compliant with the inequality for z x C = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 mα 4.7 Roll-yaw stability regions in the σ −σ plane for different values of the z x stability derivatives C and C . a) Classic GG problem with 0 value mα nβ of the aerodynamic coefficients, b) Total region of stability increases for C < 0 and C > 0, c) Total region of stability decreases for C > 0 mα nβ mα and C < 0 d) stability region when the three sufficient conditions are n β met . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.8 FMF Static pitching coefficient for a cylinder (L/D=1) referred to the base area and diameter, for various positions of the centre of mass. . . . 106 4.9 FMF Static pitching coefficient for a cylinder (L/D=5) referred to the base area and diameter, for various positions of the centre of mass. . . . 106 4.10 FMF Static pitching coefficient for a cone (half angle = 18.5 deg) referred to the base area and diameter, for various positions of the center of mass.107 4.11 FMF Static pitching coefficient for a cone (half angle = 45 deg) referred to the base area and diameter, for various positions of the centre of mass.107 4.12 Cylinder (L/D = 5). Variation of longitudinal stability derivative (C ) mα with center of gravity position for different accommodation coefficients (right) and surface temperatures (left). . . . . . . . . . . . . . . . . . . 108 4.13 Cone (half angle = 45 deg). Variation of longitudinal stability deriva- tive (C ) with center of gravity position for different accommodation mα coefficients (right) and surface temperatures (left). . . . . . . . . . . . . 109 10

Description:
attitude control. However, aerodynamic torques have seldom been used for such purposes. Interest in LEO and even VLEO is gathering strength. In these regions, aerodynamic Yet, with a thesis structure in mind, this repetition of concepts has been (GPM) with a NLP solver. Finally, Chapter 7
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.