ebook img

Channels LTE Filtering System Electrical and Computer Engineering PDF

113 Pages·2013·1.81 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Channels LTE Filtering System Electrical and Computer Engineering

All Channels LTE Filtering System Miguel Pereira Leite Fragoso Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Examination Committee Chairperson: Prof. João Manuel Torres Caldinhas Simões Vaz Supervisor: Prof. José António Beltran Gerald Member of the Committee: Profa Maria João Ramos Marques Coelho Carillho do Rosário October 2013 Acknowledgments It is of my wholehearted will to say a big and grateful thank you to the following persons: To my Family that always supported me. To my Friends that were always there in the good times and in the bad times. To my Supervisor, José Gerald, who always corrected my mistakes and taught me plenty. The lessons learned will stay with me forever. His friendly, professional and dedicated character have truly inspired me. To Professor Horacio Neto for always being so kind and available with his help in making me understand the mistakes I was making in the VHDL code of the FPGA simulation. II Abstract 4G is the fourth and most recent generation of mobile communications standards; LTE (Long Term Evolution), marketed as 4G LTE, is a standard for high-speed data mobile phones and data terminals. It uses scalable channel bandwidths of 5 to 20 MHz (optionally up to 40 MHz). Governments of many European countries (as for instance, Portugal) are releasing (licensing) these LTE bands to private Institutions. The exhaustive use of this spectrum makes it difficult to avoid interference from adjacent channels, limiting the signal data rate. Very selective channel filtering is thus mandatory and suitable filters have to be developed for that purpose. One of these LTE (TDD) channels is the LTE band 38 occupying from 2570 to 2620 MHz. A goal to be reached, suggested by a Portuguese mobile phone company, is to design a filter with central frequency 2585 MHz and 20 MHz of bandwidth achieving 80 dB attenuation at 5 MHz beyond each side of the band. This kind of very selective filter does not exist in the market today. To note that this filter was supposed to be applied to LTE band 38. A functional filter architecture with the previous mentioned filtering properties and suitable for being used in almost any LTE band (not only in band 38) is proposed in this thesis. The filtering system’s behavior is fully simulated using MATLAB and the FPGA block using ISE. Keywords: All channels, LTE Filter, Downconversion, FPGA, Upconversion, Simulations. III Resumo 4G é a quarta e mais recente geração de normas de comunicações móveis; LTE (Long Term Evolution) comercializado como 4G LTE é uma norma de dados de alta velocidade para telefones móveis e terminais de dados. Esta utiliza canais escaláveis com largura de banda entre 5 e 20 MHz (opcionalmente pode subir até 40 MHz). Governos de muitos países Europeus (como por exemplo Portugal) estão a libertar (licensiar) estas bandas LTE para instituições privadas. O uso exaustivo do espectro torna difícil evitar a interferência de canais adjacentes, limitando a velocidade de transferência de dados do sinal. Uma filtragem muito selectiva de canais é então obrigatória e filtros adequados necessitam de ser desenvolvidos para esse propósito. Um desses canais LTE (TDD) é a banda LTE 38 que ocupa desde 2470 a 2620 MHz. Um objectivo a ser alcançado, sugerido por uma empresa de comunicações móveis Portuguesa, é desenhar um filtro com frequência central 2585 MHz e 20MHz de largura de banda, que alcance 80 dB de atenuação em apenas 5 MHz para além de cada um dos lados da banda. Este tipo de filtro, muito selectivo, não existe no mercado actualmente. Note-se que é aplicar este filtro à banda LTE 38. Uma arquitectura funcional do filtro com as propriedades previamente mencionadas e além disso adequada para ser usada na grande maioria das bandas LTE (e não apenas na banda 38) é proposta nesta tese. Palavras Chave: Filtro LTE, Qualquer Canal, Downconversion, FPGA, Upconversion, Simulações. IV Contents Acknowledgments ...............................................................................................................................II Abstract .............................................................................................................................................III Resumo ............................................................................................................................................ IV List of Figures .................................................................................................................................. VII List of Tables .................................................................................................................................... XI Acronyms List ................................................................................................................................. XIII 1. Introduction ............................................................................................................................. XIV 1.1 Introduction ........................................................................................................................... XIV 1.2 Filter Specifications ............................................................................................................... XIV 1.3 LTE Bands ............................................................................................................................. XV 1.3.1 Band 1 ............................................................................................................................. XV 1.3.2 Band 2 ............................................................................................................................. XV 1.3.3 Band 3 ............................................................................................................................. XV 1.3.4 Non Supported Band ....................................................................................................... XV 1.4 General Architecture .............................................................................................................. XV 1.5 Dissertation Outline ............................................................................................................... XVI 2. Downconversion ........................................................................................................................ XVII 2.1 Introduction .......................................................................................................................... XVII 2.2 Downconversion Block (Block A) ......................................................................................... XVIII 2.3 Downconversion Block SNR ................................................................................................... XX 2.3.1 Downconversion Block initial SNR ................................................................................... XX 2.3.2 Downconversion Block SNR Degradation ....................................................................... XXI 2.4 Mixers .................................................................................................................................XXIV 2.4.2 Up mixing and Down Mixing..........................................................................................XXIV 2.4.3 Mixing modes and concepts...........................................................................................XXV 2.4.5 Noise Figure ............................................................................................................... XXVIII 2.4.6 Downconversion Mixer Selection ..................................................................................XXIX 2.5 Down Conversion Process ...................................................................................................XXX 2.5.1 First Step .......................................................................................................................XXX 2.5.2 Second Step .............................................................................................................. XXXVI 2.5.3 Pre-Processing Before the Analog to Digital Conversion ........................................... XXXVII 2.5.4 Simulated range of the Attenuation filters in the Down conversion Block .......................... XL 3. FPGA Block ............................................................................................................................... XLII 3.1 Introduction .......................................................................................................................... XLII 3.2 ADC ..................................................................................................................................... XLII 3.2 Digital Filter .................................................................................................................... XLV V 3.2.1 Digital Filter Higher Level Design for the FPGA .............................................................. XLV 3.2.2 Digital Filter Lower Level Design for the FPGA ............................................................ XLVIII 3.3 Equalizer ....................................................................................................................... XLIX 3.4 DAC .........................................................................................................................................LI 4. Upconversion ................................................................................................................................ LII 4.1 Introduction ............................................................................................................................. LII 4.2 Upconversion Block (Block B) ........................................................................................... LIII 4.3 Upconversion Block SNR ....................................................................................................... LV 4.4 Up Conversion Process .................................................................................................. LVII 4.4.1 First Step ....................................................................................................................... LVII 4.4.2 Second Step ................................................................................................................ LVIII 5. Matlab and FPGA Simulations ................................................................................................. LXVIII 5.1 Single Run Matlab Simulation ............................................................................................ LXVIII 5.1.1 OFDM Signal generation ............................................................................................ LXVIII 5.1.2 Analog Filters Simulation .............................................................................................. LXIX 5.1.3 Matlab Simulation Results ............................................................................................ LXIX 5.2 FPGA Simulation ............................................................................................................. LXXXV 5.3 Multiple Run Matlab Simulation ...................................................................................... LXXXVI 6. Final Remarks .................................................................................................................... LXXXVIII 6.1 Future Work ................................................................................................................. LXXXVIII 6.2 Conclusions ................................................................................................................... LXXXIX 7. References .................................................................................................................................. XC Appendix ...................................................................................................................................... XCIII 1.1 LTE Bands details ............................................................................................................... XCIII 2.1 Algorithm for SNR Degradation determination ..................................................................... XCV 2.2 Single MosFET Mixer Analysis ........................................................................................... XCVI 2.3 Tables of functional filters’ components ............................................................................ XCVIII 2.5 Filter conversion to Microstrip line technology ......................................................................... CII 3.1 ADC - Some important specifications ..................................................................................... CIV 3.2 ADC – Types of Error ............................................................................................................. CV 3.4 Study of IIR filters as the FPGA Digital Filter .................................................................. CVIII 3.5 Detailed Information of FIRs’ hardware implementation .................................................. CVIII 5.1 Recursive Calculations For Filters’ Frequency Response Matlab Simulation .......................... CIX 5.2 IP3 Error after each mixing step............................................................................................ CXII VI Pages List of Figures Figure 1.1 – Ideal LTE filter specifications……………………………………………………………………………...XIV Figure 1.2 – Filtering system’s general architecture. ………………………………………………………………….XVI Figure 2.1 – Used architecture for block A……………………………………………………………………………XVII Figure 2.2 – Scheme that exhibits the operation of block A1………………………………………………………..XVIII Figure 2.3 – A simple scheme of a downconversion mixer………………………………………………………….XXIV Figure 2.4 – A simple scheme of an upconversion mixer……………………………………………………………XXIV Figure 2.5 – Operation of an ideal downconversion mixer for a single frequency signal. ……………………….XXIV Figure 2.6 – Operation of an ideal upconversion mixer for a single frequency signal…………………………….XXV Figure 2.7 – Schematic of a simple and representative continuous non-linear mode mixer……………………...XXV Figure 2.8 – Graphical determination of the third order intercept point……………………………………………XXVII Figure 2.9 – Ring mixer waveforms…………………………………………………………………………………..XXVIII Figure 2.10 – Noise generated by a downconversion image band in the frequency domain……………………XXIX Figure 2.11 – Schema of the downconversion of the signal to 600 MHz…………………………………..............XXX Figure 2.12 – Illustration of band 1 and the matching dynamic range of the LO frequency……………………...XXXI Figure 2.13 – Highest frequency image band and LTE lower frequency band in band 1. …………………….XXXII Figure 2.14 – HP Filter Specifications to Reject the Image Band of Band 1……………………………..............XXXII Figure 2.15 – HP Filter Circuit to Reject the Image Band of Band 1……………………………………...............XXXII Figure 2.16 – Illustration of band 2 and the matching dynamic range of the LO frequency…………………….XXXIII Figure 2.17 – Highest frequency image band and respective LTE band in Band 2……………………………..XXXIII Figure 2.18 – HP Filter Specifications to Reject the Image Band of Band 2……………………………………..XXXIV Figure 2.19 – HP Filter Circuit to Reject the Image Band of Band 2……………………………………………...XXXIV Figure 2.20 – Illustration of band 3 and the matching dynamic range of the LO frequency. …………………..XXXIV Figure 2.21 – Highest frequency image band and respective LTE band in Band 3. …………………………….XXXV Figure 2.22 – High Pass Filter Specifications to Reject the Image Band of Band 3……………………………..XXXV Figure 2.23 – HP Filter Circuit to Reject the Image Band of Band 3……………………………………………...XXXVI Figure 2.24 – Schema of the downconversion from 600MHz to a 60MHz……………………………………….XXXVI Figure 2.25 – HP filter Specifications to Reject the Image Band before 2nd downconversion step…..............XXXVI Figure 2.26 – HP Filter Circuit to Reject the Image Band before 2nd dowconversion step…………………...XXXVII VII Figure 2.27 – Schema of the replica generation of the signal digitalization process…………………………...XXXVII Figure 2.28 – Digitalizing a band pass signal in 60MHz with an (cid:1858) of 250 MSPS…………………….............XXXVIII (cid:3046) Figure 2.29 – Adjacent Replicas interference in digitalizing the band pass signal. ………………………......XXXVIII Figure 2.30 – Band pass filter for cleaning the signal spectrum of the input of the ADC……………………..XXXVIII Figure 2.31 – Low pass filter to attenuate the LO tone inserted in the second mixing step………………………...XL Figure 3.1 – Internal constitution of the FPGA block…………………………………………………………………..XLII Figure 3.2 – Magnitude response of Equiripple solution with (cid:1827) =1 (cid:1856)(cid:1828)……………………………………..........XLVI (cid:3043) Figure 3.3 – Simplified example of a systolic parallel FIR implementation. ……………………………………...XLVIII Figure 3.4 – Simplified example of a symmetric systolic parallel FIR implementation…………………………....XLIX Figure 3.5 – Frequency response of the FIR equalizer designed……………………………………………………….L Figure 4.1 – Architecture to be used to construct block B. …………………………………………………………….LIII Figure 4.2 – Scheme that exhibits the operation of block B1………………………………………………………….LIV Figure 4.3 – Schema of the upconversion of 60MHz to 600MHz……………………………………………............LVII Figure 4.4 – Response of Band Rejection Filter to attenuate 540 MHz LO leaked tone . ………………...........LVIII Figure 4.5 - BR Filter Circuit to attenuate the LO leaked tone in 540 MHz. ………………………………………LVIII Figure 4.6 – Schema of of upconversion from 600 MHz to LTE band chosen……………………………………...LIX Figure 4.7 – Response of HP Filter to reject the variable LO leaked tone in Band 1………………………………LXII Figure 4.8 – HP Filter Circuit to Reject the Variable LO leaked tone in Band 1…………………………………….LXII Figure 4.9 – Response of HP Filter to reject the LO leaked tone in Band 2 Sub Band 1………………………….LXII Figure 4.10 – HP Filter to reject the LO tone in in Band 2 Sub Band 1………………………………..……………LXIII Figure 4.11 – Response of HP Filter to reject the LO leaked tone in Band 2 Sub Band 2………………............LXIII Figure 4.12 – HP Filter to reject the LO leaked tone in Band 2 Sub Band 2……………………………………….LXIII Figure 4.13 – Response of HP Filter to reject the LO leaked tone in Band 2 Sub Band 3……………………….LXIV Figure 4.14 – HP Filter to reject the LO leaked tone in Band 2 Sub Band 3………………………………...........LXIV Figure 4.15 – Response of HP Filter to reject the LO leaked tone in Band 3 Sub Band 1………………………..LXV Figure 4.16 – HP Filter to reject the LO leaked tone in Band 3 Sub Band 1………………………………………..LXV Figure 4.17 – Response of HP Filter to reject the LO leaked tone in Band 3 Sub Band 2……………………......LXV Figure 4.18 – HP Filter to reject the LO leaked tone in Band 3 Sub Band 2……………………………………….LXVI Figure 5.1 – Scheme of the generation of an ofdm signal centered at frequency (cid:1858)…………………………….LXVIII (cid:3030) Figure 5.2 – Power spectrum at the entrance of block A……………………………………………………............LXX Figure 5.3 – Zoom in of power spectrum of signal at the entrance of block A………………………...................LXX Figure 5.4 – Power spectrum after HP Band 3………………………………………………………………………..LXXI VIII Figure 5.5 – Zoom in of power spectrum of the signal after HP Band 3…………………………………………..LXXI Figure 5.6 – Power spectrum after the Down Conversion first mixing step……………………………………….LXXII Figure 5.7 – Power spectrum of the LO Isolation error………………………………………………………...........LXXII Figure 5.8 – Zoom in of power spectrum of signal after DC 1st mixing step……………………………….........LXXIII Figure 5.9 – Power spectrum after second Image band Rejection Filter………………………………………….LXXIII Figure 5.10 – Zoom in of power spectrum of signal after FRI2…………………………………………………….LXXIV Figure 5.11 - Power spectrum after the Down Conversion second mixing step…………………………………LXXIV Figure 5.12 – Zoom in of power spectrum of signal after DC 2nd mixing step………………………….………LXXV Figure 5.13 - Power spectrum after the Pre Processing Band Pass Filter………………………………………..LXXV Figure 5.14 – Zoom in of power spectrum of signal after the Band Pass Filter. ……………………………….LXXVI Figure 5.15 - Power spectrum after the Pre Processing Low Pass Filter…………………………………………LXXVI Figure 5.16 – Zoom in of power spectrum of signal after the Low Pass Filter………………………................LXVII Figure 5.17 - Power spectrum after the Analog to Digital Converter………………………………………............LXVII Figure 5.18 - Power spectrum after Normalization before the FPGA Digital Filter………………………………LXVIII Figure 5.19 - Power spectrum after FPGA Digital Filter, after Renormalization. ………………………………..LXVIII Figure 5.20 - Power spectrum after FPGA Equalizer and power adaptation for 1st UC mixer………………….LXXIX Figure 5.21 - Power spectrum after Oversampling..…………………………………………………………………LXXX Figure 5.22 - Power spectrum after the Sample and Hold………………………………………………………….LXXX Figure 5.23 - Power spectrum after the DAC ideal Low Pass Filter………………………………………………..LXXX Figure 5.24 - Power spectrum after first Upconversion mixing step. ……………………………………………..LXXXI Figure 5.25 - Power spectrum after Upconversion first Image Band Rejection Filter. ………………………….LXXXI Figure 5.26 – Filter response of BR Filter, that functions as Notch at 540 MHz………………………………...LXXXII Figure 5.27 - Power spectrum after “Notch” at 540 MHz…………………………………………………….........LXXXII Figure 5.28 - Power spectrum after the Upconversion second mixing step……………………………….......LXXXIII Figure 5.29 – Zoom in of power spectrum of the signal at IF and of its respective image band……………...LXXXIII Figure 5.30 - Power spectrum after HP Band 3……………………………………………………………………LXXXIV Figure 5.31 - Power spectrum after HP filter structure to reject the variable LO tone (block B1)………........LXXXIV Figure 5.32 – Zoom in of power spectrum of signal after block B1…………………………………...………….LXXXV Figure 5.33 – Comparison between FPGA simulated in ISE and simulated in MATLAB..……………………LXXXVI Figure 5.34 - Power spectrum at end of LTE filter, Montecarlo Simulation of 15 sequential runs…………..LXXXVII Figure 5.35 – Zoom in of power spectrum of Montecarlo Simulation. See ripple and SNR………………….LXXXVII IX Figure a2.1 – First equivalent circuit with ideal transmission lines of the LP filter…………………………………...CII Figure a2.2 – Kuroda identities. Case a)………………………………………………………………………………...CIII Figure a2.3 – Kuroda identities. Case b)……………………………………………………………………………......CIII Figure a2.4 – Transmission line filter schematic after insertion of 2 unit elements………………………...............CIII Figure a2.5 – Transmission line filter schematic after application of the Kuroda identities……………………….CIV Figure a3.1 – Graphical representation of the SFDR in dBc and dBFS……………………………………………..CV Figure a3.2 – Representation of a generic and ideal DAC transfer function…………………………………………CV Figure a3.3 – Representation of an ideal 3 bit DAC transfer function………………………………………………...CV Figure a3.4 – ADC offset error graphical example……………………………………………………………………..CVI Figure a3.5 – ADC gain error graphical example. ……………………………………………………………………..CVI Figure a3.6 – ADC DNL error graphical example………………………………………………………….................CVII Figure a3.7 – ADC INL error graphical example..……………………………………………………………………..CVII Figure a3.8 – Simplified serial FIR implementation………………………………………………………….............CVIII Figure a3.9 – Example of a transposed parallel FIR implementation………………………………………………..CIX Figure a5.1 – Ilustration of a generic lumped component filter of even order……………………………………….CIX Figure a5.2 – General representation of a lumped component filter of odd order…………………………………..CX Figure a5.3 – Capacitor and respective impedance…………………………………………………………………..CXI Figure a5.4 – Inductor and respective impedance……………………………………………………………………CXI Figure a5.5 – Inductor and capcitor in parallel and respective impedance…………………………………………CXI Figure a5.6 – Inductor and capcitor in series and respective impedance…………………………………………..CXI Figure a5.7 – IP3 error after first downconversion mixer……………………………………………………………..CXII Figure a5.8 – IP3 error after second downconversion mixer…………………………………………………………CXII Figure a5.9 – IP3 error after first upconversion mixer………………………………………………………………..CXIII Figure a5.10 – IP3 error after second upconversion mixer. ………………………………………………………...CXIII X

Description:
used in almost any LTE band (not only in band 38) is proposed in this thesis. The filtering behavior is fully simulated using MATLAB and the FPGA block using ISE. Note-se que é aplicar este filtro à banda LTE 38. 1.1 Introduction 2.5.3 Pre-Processing Before the Analog to Digital Conversion .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.