ebook img

Certain logarithmic integrals, including solution of Monthly problem #tbd, zeta values, and expressions for the Stieltjes constants PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Certain logarithmic integrals, including solution of Monthly problem #tbd, zeta values, and expressions for the Stieltjes constants

Certain logarithmic integrals, including solution of Monthly problem #tbd, zeta values, and 2 1 expressions for the Stieltjes constants 0 2 n Mark W. Coffey a J Department of Physics 6 1 Colorado School of Mines ] Golden, CO 80401 h p (Received 2011) - h t December 31, 2011 a m [ 1 Abstract v 3 We solve problem x proposed by O. Oloa, AMM xxx 2012 119? (to ap- 9 pear), p. yyy for certain definite logarithmic integrals. A number of generating 3 3 functions are developed with certain coefficients pn, and some extensions are 1. presented. The explicit relation of pn to N¨orlund numbers Bn(n) is discussed. 0 Certain inequalities are conjectured for the {p } sequence of coefficients, in- n 2 cluding its convexity, and an upper bound is demonstrated. It is shown that 1 v: pn values may be used to express the Stieltjes constants for the Hurwitz and i Riemann zeta functions, as well as values of these zeta functions at integer X argument. Other summations with the p coefficients are presented. n r a Key words and phrases logarithmic integrals, Pochhammer symbol, generating function, digamma func- tion, Glaisher constant, N¨orlund number, Hurwitz zeta function, Stieltjes constants 2010 AMS codes 11Y60, 11Y35, 05A15 1 Solution of problem xxx O. Oloa has proposed the following problem in the Amer. Math. Monthly 119 (?), yyy (2012?). (a) Prove the formula 1 1 1 2 3 + dx = ln(2π)− . (1.1) lnx 1−x 2 Z0 (cid:18) (cid:19) (b) If σ ≥ 0, find a closed form expression for 1 1 1 2 + xσdx. lnx 1−x Z0 (cid:18) (cid:19) N.B. Although the statement (b) is restricted to σ ≥ 0, this part may be extended to Re σ > −1, and our explicit expressions reflect this fact. We first prove (1.1) and answer part (b), and then present several extensions. Proof. Let (a) = Γ(a + n)/Γ(a) be the Pochhammer symbol, where Γ is the n Gamma function, ψ = Γ′/Γ be the digamma function, γ = −ψ(1) be the Euler constant, and F the generalized hypergeometric function (e.g., [7, 1]). We introduce p q the positive constants (e.g., [3], Proposition 11, [4], Proposition 5, [5], Proposition 2) 1 1 (−1)n+1 n s(n,k) p = − (−x) dx = , (1.2) n+1 n n! n! k +1 Z0 k=1 X where s(k,ℓ) is the Stirling number of the first kind. The first few values of these are p = 1/2, p = 1/12, p = 1/24, p = 19/720, and p = 3/160. These constants enter 2 3 4 5 6 the generating function ∞ 1 1 p zn−1 = + , |z| < 1. (1.3) n+1 z ln(1−z) n=1 X 2 Multiplying (1.3) by ln(1−z) and manipulating series, one finds the recursion relation n−1 1 p j+1 p = − , n ≥ 1. n+1 n+1 (n−j +1) j=1 X We then have Lemma 1. ∞ 1 (1−z) = [(n+1)p −np ]zn +p + , |z| < 1. (1.4) ln2(1−z) n+3 n+2 3 z2 n=1 X This follows from the derivative expression ∞ 1 1 (n−1)p zn−2 = − + . (1.5) n+1 z2 (1−z)ln2(1−z) n=2 X As a consequence, we obtain 2 ∞ 1 1 1 + = + [(n+3)p −np ]zn. (1.6) n+3 n+2 ln(1−z) z 4 (cid:18) (cid:19) n=1 X Then for (a), 1 1 1 2 1 1 1 2 + dz = + dz ln(1−z) z lnz 1−z Z0 (cid:18) (cid:19) Z0 (cid:18) (cid:19) 1 1 ∞ = + [(n+3)p −np ](1−z)n dz n+3 n+2 4 Z0 ( n=1 ) X ∞ 1 1 = + [(n+3)p −np ] . (1.7) n+3 n+2 4 n+1 n=1 X The integral representation of (1.2) may now be inserted, and the sums rewritten in terms of binomial coefficients. For instance, we have ∞ ∞ ∞ 1 (n+3) (n+3) x 2 x (−x) = (−1)n = (−1)n 1+ n+2 n+1(n+2)! (n+1) n+2 (n+1) n+2 n=1 n=1 (cid:18) (cid:19) n=1 (cid:20) (cid:21)(cid:18) (cid:19) X X X 3 1 = (2−x)(x−1)−x[1−2γ +x−2ψ(x+1)]. (1.8) 2 1 Noting that ψ(x+1)dx = 0, we have 0 1 R 1 1 2 1 1 x 3 + dz = + γ − −2γx+ x2 −2xψ(x+1) dx ln(1−z) z 4 2 2 Z0 (cid:18) (cid:19) Z0 (cid:20) (cid:21) 3 = ln(2π)− . (1.9) 2 In the last step, we integrated by parts (e.g., [2]), 1 1 1 1 xψ(x+1)dx = − lnΓ(x+1)dx = − [lnx+lnΓ(x)]dx = 1− ln(2π). (1.10) 2 Z0 Z0 Z0 For (b), we let B(x,y) = Γ(x)Γ(y)/Γ(x+y) be the Beta function. Then 1 1 1 2 + xσdx lnx 1−x Z0 (cid:18) (cid:19) 1 1 ∞ = + [(n+3)p −np ](1−x)n xσdx n+3 n+2 4 Z0 ( n=1 ) X ∞ 1 = + [(n+3)p −np ]B(n+1,σ+1). (1.11) n+3 n+2 4(σ +1) n=1 X Lemma 2. For Re y > 0, ∞ 1 1 p B(n+1,y) = − −1+2y −ln(2π)+2lnΓ(y)+(1−2y)ψ(y) . n+3 2 6y n=1 (cid:20) (cid:21) X (1.12) Proof. From (1.2) we have ∞ 1 1 p B(n+1,y) = − x(x−1)[ F (1,1,2−x;3,y +1;1)−1]dx. (1.13) n+3 3 2 2y n=1 Z0 X We now use the identity (1) (1) (2) j j j = 2 − , (1.14) (3) (2) (3) j j j 4 being a special case of (a) (a) (a+1) j j j = (a+1) −a , (a+2) (a+1) (a+2) j j j to obtain ∞ (1) (2−x) j j F (1,1,2−x;3,y +1;1) = 3 2 (3) (y +1) j j j=0 X ∞ (1) (2) (2−x) (1) j j j j = 2 − (2) (3) (y +1) j! j=0 (cid:20) j j(cid:21) j X 2y = [1−x−(x+y −1)ψ(y)+(x+y −1)ψ(x+y +1)]. (1.15) x(x−1) Carrying out the integration of (1.13) gives the Lemma. Then by Proposition 2 in the next section with y = σ +1 we obtain 1 1 1 2 3 + xσdx = (σ+1)ln(σ+1)−2σ+σψ(σ+1)−2lnΓ(σ+1)+ln(2π)− . lnx 1−x 2 Z0 (cid:18) (cid:19) (1.16) Remarks. As is apparent from (1.11) and (1.16), Re σ = −1 is the ‘critical line’ for divergence of the integral. We have the following Corollary 1. For n ≥ 1, n+1 (n+3)p −np = p p . (1.17) n+3 n+2 k+1 n−k+3 k=1 X This follows from multiplication of series, using (1.6), 2 ∞ 1 1 1 + = + [(n+3)p −np ]zn n+3 n+2 ln(1−z) z 4 (cid:18) (cid:19) n=1 X 5 ∞ n+1 = p p zn. (1.18) k+1 n−k+3 n=0 k=1 XX Is there a combinatorial interpretation of identity (1.13)? The Appendix generalizes (1.14) and the following identity for ratios of Pochham- mer symbols. Extensions We may proceed similarly as above, and find for instance ∞ 1 1 = [(n+1)(n+2)p −(n+1)(2n+1)p +n2p ]zn ln3(1−z) 2 n+4 n+3 n+2 n=1 X 1 3 1 − + − , |z| < 1, (2.1) z3 2z2 2z giving, along with (1.3) and (1.4), 3 1 1 1 3 3 1 + = + + + ln(1−z) z ln3(1−z) zln2(1−z) z2ln(1−z) z3 (cid:18) (cid:19) ∞ 1 = [(n+4)(n+5)p −(n+1)(2n+7)p +n2p ]zn n+4 n+3 n+2 2 n=4 X 1 z z2 133 + + − + z3. (2.2) 8 16 24 4320 Then 1 1 1 3 1 1 1 3 + dz = + dz ln(1−z) z lnz 1−z Z0 (cid:18) (cid:19) Z0 (cid:18) (cid:19) ∞ 1 1 3073 = [(n+4)(n+5)p −(n+1)(2n+7)p +n2p ] + n+4 n+3 n+2 2 (n+1) 17280 n=4 X 31 = − +6lnA, (2.3) 24 6 wherein A is Glaisher’s constant, such that lnA = −[ζ(−1)+ζ′(−1)] = 1/12−ζ′(−1), andζ(s)istheRiemannzetafunction. Thelattercontributionentersfromtheintegral 1 1 1 t2ψ(t+1)dt = −2 tlnΓ(t+1)dt = (1−ln2π)+2lnA. (2.4) 2 Z0 Z0 This integral may be readily determined from Kummer’s Fourier series for lnΓ. Oth- erwise, it may be found through the infinite series 1 γ ∞ 1 γ ∞ (−1)k t2ψ(t+1)dt = − + (−1)kζ(k) tk+1dt = − + ζ(k). (2.5) 3 3 k +2 Z0 k=2 Z0 k=2 X X For reference, we have from (2.1) ∞ 1 1 = (n+1)(n+2)(n+3)p −3(n+1)2(n+2)p ln4(1−z) 6 n+5 n+4 n=1 X(cid:2) 1 1 7 2 1 +(n+1)(3n2 +3n+1)p −n3p zn− − + − + , |z| < 1. (2.6) n+3 n+2 720 6z 6z2 z3 z4 (cid:3) Then also using (1.3), (1.4), and (2.1), we find 4 1 1 + ln(1−z) z (cid:18) (cid:19) ∞ 1 = [(n+1)(n+2)(n+3)p −3(n+1)2(n+2)p +(n+1)(3n2+3n+1)p −n3p ]zn n+5 n+4 n+3 n+2 6 n=1 X ∞ 1 − +2 [(n+1)(n+2)p −(n+1)(2n+1)p +n2p ]zn−1 n+4 n+3 n+2 720 n=1 X ∞ ∞ +6 [(n+2)p −(n+1)p ]zn−1 +4 p zn−1. (2.7) n+4 n+3 n+4 n=1 n=1 X X By using (1.2) we obtain 1 1 1 4 1 1 53 57 143 t4 + dz = − + t− t2 + t3 + ln(1−z) z 720 18 8 36 24 Z0 (cid:18) (cid:19) Z0 (cid:18) 7 1 8 10 + − t+6t2 − t3 [ψ(t+1)+γ] dt 6 3 3 (cid:20) (cid:21) (cid:19) 49 5 = − +2lnA+ ζ(3). (2.8) 72 2π2 From (2.6) we have ∞ 1 1 = [(n+1)(n+2)(n+3)(n+4)p −2(n+1)(n+2)(n+3)(2n+3)p ln5(1−z) 24 n+6 n+5 n=1 X +(n+1)(n+2)(6n2 +12n+7)p −(n+1)(2n+1)(2n2 +2n+1)p +n4p zn n+4 n+3 n+2 1 5 25 5 1 (cid:3) − + − + − , |z| < 1, (2.9) 24z 8z2 12z3 2z4 z5 leading to 5 1 1 + ln(1−z) z (cid:18) (cid:19) ∞ 1 = [(n+1)(n+2)(n+3)(n+4)p −2(n+1)(n+2)(n+3)(2n+3)p n+6 n+5 24 n=1 X +(n+1)(n+2)(6n2 +12n+7)p −(n+1)(2n+1)(2n2 +2n+1)p +n4p zn n+4 n+3 n+2 ∞ 5 (cid:3) + [(n+1)(n+2)(n+3)p −3(n+1)2(n+2)p +(n+1)(3n2+3n+1)p −n3p ]zn−1 n+5 n+4 n+3 n+2 6 n=1 X ∞ +5 [(n+2)(n+3)p −(n+2)(2n+3)p +(n+1)2p ]zn−1 n+5 n+4 n+3 n=1 X ∞ ∞ +10 [(n+3)p −(n+2)p ]zn−1 +5 p zn−1. (2.10) n+5 n+4 n+5 n=1 n=1 X X By performing the integration and using (1.2) we determine 1 1 1 5 4367 5 15 35 + dz = − + lnA+ ζ(3)− ζ′(−3). (2.11) ln(1−z) z 8640 3 8π2 3 Z0 (cid:18) (cid:19) Here we have used 1 49 t4ψ(t)dt = −4ζ′(−1)+ζ′(0)+6ζ′(−2)−4ζ′(−3) 180 Z0 8 11 1 3 = − +4lnA− ln(2π)− ζ(3)−4ζ′(−3). (2.12) 180 2 2π2 Based upon the evaluation of 1tkψ(t)dt = −k 1tk−1lnΓ(t)dt, k > −1, we may 0 0 k+1 anticipate that 1 1 + 1 R dz evaluates inRterms of 0 ln(1−z) z (cid:16) (cid:17) R ζ(3) ζ(5) ζ(k −1) Q+QlnA+Q +Q +...+Q π2 π4 πk−2 +Qζ′(−3)+Qζ′(−5)+...+ζ′(1−k), k even, (2.13a) and ζ(3) ζ(5) ζ(k) Q+QlnA+Q +Q +...+Q π2 π4 πk−1 +Qζ′(−3)+Qζ′(−5)+...+ζ′(2−k), k odd. (2.13b) We provide some discussion of intermediate calculations in the above steps. First, we consider the integrals 1tkψ(t)dt. These may be treated by multiple integrations 0 by parts using the fact thRat −ψ(a) is the zeroth Stieltjes constant for the Hurwitz zeta function ζ(s,a). That is, we have the limit representation 1 ψ(t) = −lim ζ(z,t)− . (2.14) z→1 z −1 (cid:18) (cid:19) Thus, 1 1 1 tkψ(t)dt = −lim tk ζ(z,t)− dt, (2.15) z→1 z −1 Z0 Z0 (cid:20) (cid:21) with the interchange justified by uniform convergence of the integral. We have the 1 properties ∂ ζ(s,a) = −sζ(s+ 1,a) and ζ(s,t)dt = 0 for Re s < 1. By iteration a 0 we may then obtain the integrals R 1 1 1 tkζ(z,t)dt = − tk∂ ζ(z −1,t)dt t z −1 Z0 Z0 9 k 1 ζ(z −1) = tk−1ζ(z −1,t)dt− . (2.16) z −1 z −1 Z0 Secondly, the insertion of the integral representation of (1.2) for p into sums n+1 such as (2.10) gives certain hypergeometric summations. Again, F denotes the p q generalized hypergeometric function. As an illustration, consider a contribution from a sum such as ∞ n3p . By recalling the property (a) = a(a+1) , we have n=1 n+6 n+1 n P ∞ ∞ (−t) (−t) − n3 n+5 = − (n+1)3 n+6 (n+5)! (n+6)! n=1 n=0 X X ∞ (2)3 (6−t) = −t(t−1)(t−2)(t−3)(t−4)(t−5) n n (1)3 (n+6)! n=0 n X 1 ∞ (2)3 (6−t) 1 = −t(t−1)(t−2)(t−3)(t−4)(t−5) n n 720 (1)2 (7) n! n=0 n n X 1 = −−t(t−1)(t−2)(t−3)(t−4)(t−5) F (2,2,2,6−t;1,1,7;1). (2.17) 4 3 720 Thirdly, (i) there are relations between the F sums so obtained, and (ii) they p+1 p are often related to the digamma function. By manipulating divided difference forms of the ψ function, relations such as the following may be obtained: F (2,2,3−t;3,4;1)+ F (2,2,2,3−t;1,3,4;1) 3 2 4 3 12[3−3t+γt+tψ(t+1)] 12[1−2t+γt+tψ(t+1)] 12 = − + = . (2.18) t(t−1)(t−2) t(t−1)(t−2) t(t−1) Likewise, we have 12(4−t) F (2,2,2,2,3−t;1,1,3,4;1)+ F (2,2,2,3−t;1,3,4;1) = . (2.19) 5 4 4 3 t(t−1)(t−2) In this way, summations over the p constants may be evaluated. n 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.