ebook img

Carbon-Based Nanomaterials 2.0 PDF

247 Pages·2023·8.553 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Carbon-Based Nanomaterials 2.0

Carbon-Based Nanomaterials 2.0 Edited by Ana María Díez-Pascual Printed Edition of the Special Issue Published in International Journal of Molecular Sciences www.mdpi.com/journal/ijms Carbon-Based Nanomaterials 2.0 Carbon-Based Nanomaterials 2.0 Editor Ana Mar´ıa D´ıez-Pascual MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin Editor AnaMar´ıaD´ıez-Pascual Qu´ımicaAnal´ıtica,Qu´ımica F´ısicaeIngenier´ıaQu´ımica UniversidaddeAlcala´ Alcala´ deHenares,Madrid Spain EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal InternationalJournalofMolecularSciences (ISSN 1422-0067) (available at: www.mdpi.com/journal/ ijms/special issues/carbon nano 2). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-6549-1(Hbk) ISBN978-3-0365-6548-4(PDF) © 2023 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheEditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Prefaceto”Carbon-BasedNanomaterials2.0” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix AnaMar´ıaDı´ez-Pascual Carbon-BasedNanomaterials Reprintedfrom: Int. J.Mol. Sci. 2021,22,7726,doi:10.3390/ijms22147726 . . . . . . . . . . . . . . 1 Md. Motiar Rahman, Mst Gulshan Ara, Mohammad Abdul Alim, Md. Sahab Uddin, AgnieszkaNajdaandGhadeerM.Albadranietal. MesoporousCarbon: AVersatileMaterialforScientificApplications Reprintedfrom: Int. J.Mol. Sci. 2021,22,4498,doi:10.3390/ijms22094498 . . . . . . . . . . . . . . 7 BanenduSunderDash,GilsJose,Yu-JenLuandJyh-PingChen FunctionalizedReducedGrapheneOxideasaVersatileToolforCancerTherapy Reprintedfrom: Int. J.Mol. Sci. 2021,22,2989,doi:10.3390/ijms22062989 . . . . . . . . . . . . . . 29 Lucja Dybowska-Sarapuk, Weronika Sosnowicz, Jakub Krzeminski, Anna Grzeczkowicz, LudomiraH.GranickaandAndrzejKotelaetal. PrintedGrapheneLayerasaBaseforCellElectrostimulation—PreliminaryResults Reprintedfrom: Int. J.Mol. Sci. 2020,21,7865,doi:10.3390/ijms21217865 . . . . . . . . . . . . . . 51 CarlosSainz-Urruela,SoledadVera-Lo´pez,Mar´ıaPazSanAndre´sandAnaM.Dı´ez-Pascual Graphene-BasedSensorsfortheDetectionofBioactiveCompounds: AReview Reprintedfrom: Int. J.Mol. Sci. 2021,22,3316,doi:10.3390/ijms22073316 . . . . . . . . . . . . . . 65 AnastasiosGotzias,ElenaTocciandAndreasSapalidis OntheConsistencyoftheExfoliationFreeEnergyofGraphenesbyMolecularSimulations Reprintedfrom: Int. J.Mol. Sci. 2021,22,8291,doi:10.3390/ijms22158291 . . . . . . . . . . . . . . 107 Mar´ıa Paz San Andre´s, Marina Ban˜os-Cabrera, Lucı´a Gutie´rrez-Ferna´ndez, Ana Mar´ıa Dı´ez-PascualandSoledadVera-Lo´pez Fluorescence Study of Riboflavin Interactions with Graphene Dispersed in Bioactive Tannic Acid Reprintedfrom: Int. J.Mol. Sci. 2021,22,5270,doi:10.3390/ijms22105270 . . . . . . . . . . . . . . 119 Łukasz Wasyluk, Vitalii Boiko, Marta Markowska, Mariusz Hasiak, Maria Luisa Saladino andDariuszHreniaketal. GrapheneCoatingObtainedinaCold-WallCVDProcessontheCo-CrAlloy(L-605)forMedical Applications Reprintedfrom: Int. J.Mol. Sci. 2021,22,2917,doi:10.3390/ijms22062917 . . . . . . . . . . . . . . 139 Mo´nicaCicue´ndez,LauraCasarrubios,NathalieBarroca,DanielaSilva,Mar´ıaJose´ Feitoand Rosalı´aDiez-Orejasetal. BenefitsintheMacrophageResponseDuetoGrapheneOxideReductionbyThermalTreatment Reprintedfrom: Int. J.Mol. Sci. 2021,22,6701,doi:10.3390/ijms22136701 . . . . . . . . . . . . . . 161 AnaR.Silva,AnaJ.Cavaleiro,O.Salome´ G.P.Soares,Ca´tiaS.N.Braga,AndreiaF.Salvador andM.FernandoR.Pereiraetal. Detoxification of Ciprofloxacin in an Anaerobic Bioprocess Supplemented with Magnetic CarbonNanotubes: ContributionofAdsorptionandBiodegradationMechanisms Reprintedfrom: Int. J.Mol. Sci. 2021,22,2932,doi:10.3390/ijms22062932 . . . . . . . . . . . . . . 177 v Jaroslaw Szczepaniak, Joanna Jagiello, Mateusz Wierzbicki, Dorota Nowak, Anna Sobczyk-GuzendaandMalwinaSosnowskaetal. ReducedGrapheneOxidesModulatetheExpressionofCellReceptorsandVoltage-Dependent IonChannelGenesofGlioblastomaMultiforme Reprintedfrom: Int. J.Mol. Sci. 2021,22,515,doi:10.3390/ijms22020515 . . . . . . . . . . . . . . . 197 SebastianMuraruandMarianaIonita Towards Performant Design of Carbon-Based Nanomotors for Hydrogen Separation through MolecularDynamicsSimulations Reprintedfrom: Int. J.Mol. Sci. 2020,21,9588,doi:10.3390/ijms21249588 . . . . . . . . . . . . . . 215 Dmytro Nozdrenko, Olga Abramchuk, Svitlana Prylutska, Oksana Vygovska, Vasil Soroca andKaterynaBogutskaetal. Analysis of Biomechanical Parameters of Muscle Soleus Contraction and Blood Biochemical ParametersinRatwithChronicGlyphosateIntoxicationandTherapeuticUseofC Fullerene 60 Reprintedfrom: Int. J.Mol. Sci. 2021,22,4977,doi:10.3390/ijms22094977 . . . . . . . . . . . . . . 227 vi About the Editor AnaMar´ıaDı´ez-Pascual AnaMar´ıaD´ıez-PascualgraduatedinChemistryin2001fromComplutenseUniversity(Madrid, Spain), where she also carried out her Ph.D. studies (2002–2005) . In 2005, she worked at the Max Planck Institute of Colloids and Interfaces (Germany). From 2006 to 2008, she was a Postdoctoral Researcher at the Physical Chemistry Institute of the RWTH Aachen University (Germany). Then she moved to the Institute of Polymer Science and Technology (Madrid, Spain) . Currently, she is a Permanent Professor at Alcala University (Madrid), where she focuses on the development of polymer/nanofillersystemsforbiomedicalapplications. Shehasparticipatedin25researchprojects (15 international and 10 national, being principal investigator in 6 of them). She has published 112 SCIarticlesandhasanh-indexof41andmorethan3500totalcitations. Shehaspublished22book chaptersand2monographs;sheisthefirstauthorofaninternationalpatent. Shehascontributedto 65internationalconferences. ShewasawardedtheTR352012PrizebytheMassachusettsInstituteof Technology(MIT)forherinnovativeworkinthefieldofnanotechnology. vii Preface to ”Carbon-Based Nanomaterials 2.0” This reprint, a collection of 9 original contributions and 3 reviews, provides a selection of the most recent advances in the preparation, characterization, and applications of carbon-based nanomaterials,suchascarbonnanotubes,fullerenes,andgrapheneanditsderivatives. Theresearch on this type of nanomaterials has experienced a sharp exponential growth over the last years. The infinite possibilities to modify and tailor carbon nanomaterials, is associated with their small size, approaching the size of many fundamental biomolecules. Their large specific surface area, high electrical and thermal conductivity, unique optical properties, and superior mechanical properties, havepavedthewayforabroadrangeofapplicationsrangingfromflexibleelectronicstobiomedicine, bioimaging,andsensing. Thisreprintgatherscontributionsfromrenownedresearchersinthefield, makingitareferenceforthescientificcommunityworkingonthefundamentalandappliedresearch ofcarbonnanomaterials. AnaMar´ıaDı´ez-Pascual Editor ix International Journal o f Molecular Sciences Editorial Carbon-Based Nanomaterials AnaMaríaDíez-Pascual UniversidaddeAlcalá,FacultaddeCiencias,DepartamentodeQuímicaAnalítica,QuímicaFísicaeIngeniería Química,Ctra.Madrid-Barcelona,Km.33.6,28805AlcaládeHenares,Madrid,España(Spain);[email protected]; Tel.:+34-918-856-430 Researchoncarbon-basednanomaterials,suchascarbonnanotubes,grapheneand its derivatives, nanodiamonds, fullerenes, and other nanosized carbon allotropes, has experienced sharp exponential growth over recent years. The infinite possibilities to modifyandtailorcarbonnanomaterialsareassociatedwiththeirsmallsize,approaching thesizeofmanyfundamentalbiomolecules,theirlargespecificsurfacearea,highelectrical andthermalconductivity,uniqueopticalproperties,andsuperiormechanicalproperties, which have paved the way for a broad range of applications. In particular, fullerene derivativeshavebeenappliedtosolarenergyscavenging,graphenehasbeenwidelyused inflexibleelectronics,carbonnanotubeshavebeentailoredtohavemolecularrecognition capability,graphenequantumdotshavebeenextensivelyusedforbio-imagingandsensing owingtotheirphotoluminescenceproperties,andnanodiamondshavebeendemonstrated tobeusefulinsuper-resolutionimagingandnanoscaletemperaturesensing. ThisSpecialIssue“Carbon-BasedNanomaterials”(https://www.mdpi.com/journal/ ijms/special_issues/carbon-ijms (accessed on 30 September 2020)) and Special Issue “Carbon-BasedNanomaterials2.0”(https://www.mdpi.com/journal/ijms/special_issues/ carbon_nano_2(accessedon30September2020))withacollectionof13originalcontri- butionsand5literaturereviews,providesselectedexamplesonsurfacemodificationsof carbonnanomaterialstotailortheirphysicochemicalpropertiesaswellastheirapplications inavarietyoffields,suchaselectronics,energystorage,biomedicine,andsensing. Citation: Díez-Pascual,A.M. Thelasttwodecadeshavewitnessedalotofresearchaddressingthepossiblebiomed- Carbon-BasedNanomaterials.Int.J. icalapplicationsofcarbonnanotubes(CNTs)suchasdrugdelivery,tissueengineering, Mol.Sci.2021,22,7726. https:// diagnostics,andbiosensing[1]. Inparticular,CNTscanactascontrastagentsindifferent doi.org/10.3390/ijms22147726 imagingmethods[2]. Uponfunctionalizationandconjugationwithvariousbiomarkers, theycanindicatethepresenceandlocalizationoftargetedcellswithgoodspatialresolution. Received:6July2021 CNTsaresuitablecandidatestobeemployedinsolvingthetheragnosticchallengesassoci- Accepted:7July2021 atedwithneurologicaldiseasessuchasischemicstroke. Inthisregard,Komaneetal.[3] Published:20July2021 recently synthesized vertically aligned multiwalled carbon nanotubes (VA-MWCNTs), which were purified, carboxylated, acylated, and PEGylated, for use in targeting stud- Publisher’sNote:MDPIstaysneutral ies. ThefunctionalizedVA-MWCNTswerefoundtobenontoxictowardsPC-12neuronal withregardtojurisdictionalclaimsin cells, a type of catecholamine cell that synthesizes, stores, and releases norepinephrine publishedmapsandinstitutionalaffil- anddopamine. iations. Nerveregenerationviacellelectrostimulationwillturnouttobeessentialinregenera- tivemedicine,particularlyinbodyreconstruction,artificialorgans,ornerveprostheses. Indirectelectricalcellstimulationneedsanontoxic,highlyelectricallyconductivesubstrate materialallowingforanaccurateandeffectivecellelectrostimulation. Thiscanbeeffec- Copyright: © 2021 by the author. tivelyachievedusinggraphenenanoplatelets(GNPs);however,theirstrongagglomerating Licensee MDPI, Basel, Switzerland. tendencyhindersthequalityofthemanufacturedcoatings. Therefore,thechoiceofan This article is an open access article appropriateamountofsurfactanttoachievebothahighconductivityandqualityofthe distributed under the terms and coatingiscrucial. Inthisregard,Dybowska-Sarapuketal.[4]developedgrapheneinks conditionsoftheCreativeCommons withdifferentsurfactantcontentsintherangeof2–20wt%anddemonstratedanobserv- Attribution(CCBY)license(https:// ableeffectofelectrostimulationonthebehavioroftheneuronalstemcellsembeddedin creativecommons.org/licenses/by/ thegraphenelayer. Theuseofcellularelectrostimulationmayprovideasolutiontothe 4.0/). 1 Int.J.Mol.Sci.2021,22,7726 currentlyirredeemableneurologicaldisorders,e.g.,possibilitiesfortherestorationofthe spinalcordandnerveconnections. On the other hand, biocompatible and water-soluble C fullerenes can inactivate 60 freeradicals,includingmethylradicals,superoxideanionradicals,andhydroxylradicals, protectingcellmembranesfromoxidation. Theyarepowerfulscavengersoffreeradicals duringthedevelopmentofischemiaandfatigueprocessesinskeletalmuscle[5]. Theusage ofsafedosesofC fullereneattheinitiationofvariouspathologiesleadstosignificant 60 positivetherapeuticeffects,inparticular,duringacuteliverinjury,colorectalcancer,obesity, acute cholangitis, and hemiparkinsonism and can be effective nanotherapeutics in the treatmentofcertainherbicidepoisoningsuchasglyphosate[6]. Anotherinterestingbiomedicalapplicationofcarbonnanomaterialsisinvitrobio- imaging. In this regard, Parasuraman et al. [7] synthesized “dahlia-like” hydrophilic fluorescentcarbonnanohorns(CNH)viaasimplehydrothermalchemicaloxidationmethod fromNafion-encapsulatedcarbonnanoriceparticlesatamildtemperatureof100◦C.The CNHsobtainedcouldbeusedasbio-imagingprobesbecauseofthepresenceofstructural defectssuchas5-hydroxymethylfurfuralorotheraromaticmoietiesgeneratedduringthe carbonnanoriceoxidation. Thesynthesismethoddevelopedinthisstudywillpaveanew wayfortheapplicationofCNHsasbio-imagingagentsanddrugcarriers. Grapheneanditsderivativesareverypromisingnanomaterialsforthepreparation of scaffolds for tissue repair. The response of immune cells to these graphene-based materialsappearstobecriticalinpromotingregeneration;thus,thestudyofthisresponse isessentialbeforetheyareusedtoprepareanytypeofscaffold. Anotherrelevantfactoris thevariabilityofgraphene-basedmaterials,includingthesurfacechemistry,namely,the typeandquantityofoxygenfunctionalgroups. Thus,Cicuéndezetal.[8]investigatedthe responseofRAW-264.7macrophages,monocyte-likecells,originatingfromanAbelson leukemiavirus-transformedcelllinederivedfromBALB/cmice,tographeneoxide(GO) andtwotypesofreducedGO,rGO15andrGO30,obtainedaftervacuum-assistedthermal treatmentof15and30min,respectively. TheresultsdemonstratethattheGOreductionled toadecreaseinbothoxidativestressandproinflammatorycytokinesecretion,considerably enhancingitsbiocompatibilityandpotentialforthepreparationofnovel3Dscaffoldsable totriggertheimmuneresponsefortissueregeneration. Anotherapproachistotakeadvantageofthechemicallyinertpropertiesofgraphene forcoatingmedicaldevices. Foreffectivecoating,itisnecessarytopreparethesurface of the substrate to be coated and to optimize the chemical vapor deposition process, allowing better attachment, e.g., by using the defective interface side of the graphene layer for bonding. In this regard, Wasyluk et al. [9] synthesized a graphene coating on a Co-Cr alloy by a cold wall chemical vapor deposition (CW-CVD) method, with goodmechanicalproperties(namely,hardnessandelasticmodulus). Theresultsofthe hemocompatibilitytestindicatethatthedevelopedcoatingdoesnothaveapro-coagulant effect,thuscorroboratingitspotentialformedicalapplications,particularlyinthefieldof cardiovasculardiseases. Graphene and its derivatives can also be used in anticancer therapy. For instance, theyexhibitantitumoreffectsonglioblastomamultiformecellsinvitro. Inthisregard,the antitumoractivityofrGOwithdifferentcontentsofoxygen-containingfunctionalgroups andgraphenehasbeencompared[10]. Cellmembranedamage,changesinthecellmem- branepotential,thegeneexpressionofvoltage-dependentionchannels,andextracellular receptorswereanalyzed.AreductioninthepotentialoftheU87gliomacellmembranewas observedaftertreatmentwithrGO/ammoniumthiosulphateandrGO/thioureadioxide flakes. TreatmentwithgrapheneorrGOledtoreducedendoglinexpression,stimulated celladhesion,and,hence,reducedtheabilityofcancercellmigration. rGOhasalsoemergedasagoodcandidateforcancerphotothermaltherapydueto itshugespecificsurfaceareafordrugloading,highbiocompatibility,targeteddelivery, outstandingphotothermalconversioninthenear-infraredrange,andfunctionalgroupsfor functionalizationwithmoleculessuchasphotosensitizers,siRNA,andligands[11]. Multi- 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.