Contents Page: vii Preface Page: xi Chapter 1. Accumulation Page: 1 1.1. Archimedes and the Volume of the Sphere Page: 1 1.2. The Area of the Circle and the Archimedean Principle Page: 7 1.3. Islamic Contributions Page: 11 1.4. The Binomial Theorem Page: 17 1.5. Western Europe Page: 19 1.6. Cavalieri and the Integral Formula Page: 21 1.7. Fermat’s Integral and Torricelli’s Impossible Solid Page: 25 1.8. Velocity and Distance Page: 29 1.9. Isaac Beeckman Page: 32 1.10. Galileo Galilei and the Problem of Celestial Motion Page: 35 1.11. Solving the Problem of Celestial Motion Page: 38 1.12. Kepler’s Second Law Page: 42 1.13. Newton’s Principia Page: 44 Chapter 2. Ratios of Change Page: 49 2.1. Interpolation Page: 50 2.2. Napier and the Natural Logarithm Page: 57 2.3. The Emergence of Algebra Page: 64 2.4. Cartesian Geometry Page: 70 2.5. Pierre de Fermat Page: 75 2.6. Wallis’s Arithmetic of Infinitesimals Page: 81 2.7. Newton and the Fundamental Theorem Page: 87 2.8. Leibniz and the Bernoullis Page: 90 2.9. Functions and Differential Equations Page: 93 2.10. The Vibrating String Page: 99 2.11. The Power of Potentials Page: 103 2.12. The Mathematics of Electricity and Magnetism Page: 104 Chapter 3. Sequences of Partial Sums Page: 108 3.1. Series in the Seventeenth Century Page: 110 3.2. Taylor Series Page: 114 3.3. Euler’s Influence Page: 120 3.4. D’Alembert and the Problem of Convergence Page: 125 3.5. Lagrange Remainder Theorem Page: 128 3.6. Fourier’s Series Page: 134 Chapter 4. The Algebra of Inequalities Page: 141 4.1. Limits and Inequalities Page: 142 4.2. Cauchy and the Language of є and δ Page: 144 4.3. Completeness Page: 149 4.4. Continuity Page: 151 4.5. Uniform Convergence Page: 154 4.6. Integration Page: 157 Chapter 5. Analysis Page: 163 5.1. The Riemann Integral Page: 163 5.2. Counterexamples to the Fundamental Theorem of Integral Calculus Page: 166 5.3. Weierstrass and Elliptic Functions Page: 173 5.4. Subsets of the Real Numbers Page: 178 5.5. Twentieth-Century Postscript Page: 183 Appendix. Reflections on the Teaching of Calculus Page: 186 Teaching Integration as Accumulation Page: 186 Teaching Differentiation as Ratios of Change Page: 189 Teaching Series as Sequences of Partial Sums Page: 191 Teaching Limits as the Algebra of Inequalities Page: 193 The Last Word Page: 196 Notes Page: 199 Bibliography Page: 209 Index Page: 215 Image Credits Page: 223
Description: