ebook img

Bioelectrical impedance vector analysis PDF

17 Pages·2017·1.87 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Bioelectrical impedance vector analysis

RESEARCHARTICLE Bioelectrical impedance vector analysis (BIVA) for measuring the hydration status in young elite synchronized swimmers MartaCarrasco-Marginet1,JorgeCastizo-Olier1,LaraRodr´ıguez-Zamora2,3, XavierIglesias1,FerranA.Rodr´ıguez1,DiegoChaverri1,DanielBrotons4,AlfredoIrurtia1* 1 INEFC-BarcelonaSportsSciencesResearchGroup,NationalInstituteofPhysicalEducationofCatalonia, UniversitatdeBarcelona,Barcelona,Spain,2 DepartmentofHealthSciences,MidSwedenUniversity, O¨stersund,Sweden,3 SwedishWinterSportsResearchCentre,MidSwedenUniversity,O¨stersund, a1111111111 Sweden,4 SportandHealthAreaoftheCatalanSportCouncil,GovernmentofCatalonia,Barcelona,Spain a1111111111 a1111111111 *[email protected] a1111111111 a1111111111 Abstract OPENACCESS Purpose Citation:Carrasco-MarginetM,Castizo-OlierJ, Theassessmentofbodyhydrationisacomplexprocess,andnomeasurementisvalidfor Rodr´ıguez-ZamoraL,IglesiasX,Rodr´ıguezFA, allsituations.Bioelectricalimpedancevectoranalysis(BIVA)hasemergedasarelatively ChaverriD,etal.(2017)Bioelectricalimpedance noveltechniqueforassessinghydrationstatusinsports.WeappliedBIVAa)todetermine vectoranalysis(BIVA)formeasuringthehydration statusinyoungelitesynchronizedswimmers. hydrationchangesevokedbyanintensesynchronizedswimming(SS)trainingsession;b) PLoSONE12(6):e0178819.https://doi.org/ tocharacterizethesampleofyoungeliteswimmersinrelationwithanonathleticreference 10.1371/journal.pone.0178819 population;andc)togenerateits50%,75%and95%percentilesofthebioelectrical Editor:TiagoM.Barbosa,NanyangTechnological variables. University,SINGAPORE Received:February14,2017 Methods Accepted:May21,2017 Forty-nineeliteSSfemaleswimmersoftwoagecategories,comen(C :13.9±0.9years, o Published:June7,2017 n=34)andjunior(J:16.3±0.6years,n=15),performedalong,highintensitytrainingses- r Copyright:©2017Carrasco-Marginetetal.Thisis sion.Bodymass(BM)andbioelectricalvariables(R,resistance;Xc,reactance;PA,phase anopenaccessarticledistributedundertheterms angle;andZ,impedancemodule)wereassessedpre-andpost-training.BIVAwasusedto oftheCreativeCommonsAttributionLicense, characterize1)thedistributionpatternofthebioelectricalvector(BIAvector)forbothage whichpermitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal groups,and2)pre-topost-trainingBIAvectormigration.Bioelectricalvariableswerealso authorandsourcearecredited. correlatedwithBMchangevalues. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation Results files. Mostswimmersweremostlylocatedoutsidethe75%andsomebeyondthe95%percentile Funding:Thisworkwassupportedbyresearch grantsfromGeneralitatdeCatalunya,InstitutCatalà ofthebioelectricaltoleranceellipsesofthegeneralpopulation.TheBIAvectorshowedsta- delesDones(U-34/10)http://www20.gencat.cat/ tisticallysignificantdifferencesinbothC (T2=134.7,p=0.0001)andJ (T2=126.2,p< o r portal/site/icdones,andAgènciadeGestio´d’Ajuts 0.001).Bothgroupswerealsobioelectricallydifferent(T2=17.6,p<0.001).Afterthetrain- UniversitarisideRecerca(AGUAR),(VCP/3346/ ingsession,adecreaseinBM(p=0.0001)andanincreaseinBIAvariables(p=0.01)was 2009)http://agaur.gencat.cat/es/inici/,andConsejo SuperiordeDeportes(001/UPB10/11)http://www. observed.BIVAalsoshowedasignificantpre-postvectormigrationbothinC (T2=82.1; o PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 1/17 BIVAinsynchronizedswimming csd.gob.es/.MartaCarrasco-Marginetwasapre- p<0.001)andJ (T2=41.8;p<0.001).NocorrelationswereobservedbetweenBM r doctoralresearcheralsosupportedbyAGAUR changesandbioelectricalvariables. (VCP/3346/2009).Thefundershadnoroleinstudy design,datacollectionandanalysis,decisionto publish,orpreparationofthemanuscript. Conclusions Competinginterests:Theauthorshavedeclared BIVAshowedspecificbioelectricalcharacteristicsinyoungeliteSSathletes.Considering thatnocompetinginterestsexist. thedecreaseinBMandthemigrationoftheBIAvector,weconcludethatthehomeostatic Abbreviations:BCM,Bodycellmass;BIA, hydrationstatusoftheseyoungelitefemaleswimmerswasaffectedbytheexecutionof Bioelectricalimpedanceanalysis;BMI,Bodymass intensetrainingsessions.Fromamethodologicalperspective,BIVAappearstobesensitive index;BIVA,Bioelectricalimpedancevector analysis;ECW,Extracellularwater;ECW:TBW, enoughtodetectsubtlehydrationchanges,butfurtherresearchisneededtoensureits Extracellularwater/totalbodywaterratio;Fc, validityandreliability.Moreover,thesefindingshighlighttheimportanceofensuringade- Characteristicfrequency;FFM,Fat-freemass;FM, quatefluidintakeduringtraininginyoungSSathletes. Fatmass;h,Bodyheight;Hotelling’sT2,Test comparingmeangroupvectors;ICW,Intracellular water;Cm,Membranecapacitance;PA,Phase angle;R,Bioelectricalresistance(R/hifadjustedby height);RXcgraph,R/hvs.Xc/hprobabilisticplot; SD,Standarddeviation;SF-BIA,Single-frequency Introduction bioelectricalimpedanceanalysis;s-RPE,Session ratingofpereceivedexertion;SS,Synchronized SincebecomingpartoftheOlympicprogramin1984,synchronizedswimminghasenjoyeda swimmming;TBW,Totalbodywater;Xc, growingworldwidepopularity.Thishighlytechnicalsportcombinesaerobicandanaerobic Bioelectricalreactance(Xc/hifadjustedbyheight); endurance,flexibility,strength,power,acrobaticsandperformanceskills,andchoreography Z,Bioelectricalimpedance;Zvector,Vectoryieldby theRXcgraph;˚C ,˚C ˚C ,Coreandskin [1]requiringlonghoursoftrainingtoattainsuchbroadattributes[2]. core hand, foot temperaturesoftherighthandandfoot. Mostsynchronizedswimmersenterthesportasyounggirlsattherecreationallevel,andby theageof13–15years,themoretalentedathletesstarttrainingandcompetingatamore intenselevel[3].Eliteswimmerstendtotrain6daysperweekwithonedayoff,andtraining sessionsusuallylastbetween3and5hours[2,3]andaredividedintwoworkoutsperdaywith differentcontent.Forexample,sport-specificskilltraininginthewatercouldfollowapoolses- sionofswimmingforaerobicfitness.Adrylandtrainingcouldoccurlaterinthesameday, consistingofflexibility,drylanddrills,orapsychologysession[3].Asaresult,trainingde- mandsattheeliteleveloftenresultinhigh-volume—averagingapproximately40hperweek— andhigh-intensitytrainingprograms[2,4]. Youngathletesmayexperiencefluidimbalancesifsomeconditionsaremet,withpossible consequencesontheirphysicalperformance,cognitiveperformanceandhealthmaintenance [5–8]. Despitethehighrequirementsatsuchayoungage,informationaboutfluidintakeand hydrationduringthestrenuousSStrainingisscarce.Femaleswimmersshowlowenergyavail- ability,especiallyinphasesofintensifiedtrainingperformedbeforecompetition[9].Findings highlighttheimportanceofensuringadequatefluidintakeduringsynchronizedswimming trainingtoenableoptimalperformance.Nevertheless,ithasbeensuggestedthatthereislower fluidreplacementduringpoolsessions,possiblyduetothelimiteddrinkbreaksorbecause athletestrytoavoidpotentialgastrointestinaldiscomfortiftheexerciserequiresthemtobe upsidedown[10]. Theassessmentofbodyhydrationisadynamicandcomplexprocess,andnomeasurement isvalidforallsituations[11].Inthiscontext,bioelectricalimpedancevectoranalysis(BIVA) emergesasarelativelynoveltechniqueforassessinghydrationstatuswithoutalgorithm-inher- enterrorsorrequiringassumptionssuchasconstanttissuehydration[12,13].BIVAusesraw bioelectricalimpedanceparameters,i.e.,resistance(R,theoppositiontoflowthroughintra- andextracellularionicsolutions)andreactance(Xc,additionaloppositionfromthecapaci- tanceeffectofcellmembranesandtissueinterfaces),standardizedbyheight(h)toremovethe PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 2/17 BIVAinsynchronizedswimming effectofconductorlength,whichyieldsavectorthatisplottedinanRXcgraph[14].Overall, BIVApropertiesareespeciallyinterestingforhydrationassessmentinsports,duringboth competitionsandtraining[15,16]. Theaimofthisstudywas,first,todeterminethehydrationchangesevokedduringasyn- chronizedswimmingtrainingsessionbyfocusingonchangesofthewhole-bodyimpedance vector.Secondly,wecomparedtheSSyoungelitesamplewithareferencenonathleticpopula- tionandgeneratedits50%,75%and95%percentilesofthebioelectricalvariablesdistribution, alsoknownastoleranceellipses.Wehypothesizedthatthehydrationstatusoftheyoungswim- merswouldbealteredbythelong,intensetrainingsessionsandthebarriersforanadequate fluidintake.Inthisline,theseswimmerswouldbecharacterizedbyaspecificdistributionof BIVAvariableswhencomparedtothereferencepopulation. Materialsandmethods Participants Eighty-fourfemaleSSathletesoftwocompetitivecategories,comen(C ,n=53)andjunior o (J,n=31)swimmers,includingtheentireSpanishnationaljuniorteam,wererecruitedfor r thestudyinMarch2012.Thirty-five(C ,n=19;J,n=16)didnotmeetinclusioncriteria. o r Inclusioncriteriawereasfollows:(1)tohavecompetedatnationaland/orinternationallevel atleastintheprevioustwoyears;(2)tonotpresentinjuriesoranyclinicalconditionatthe timeofthestudy;(3)tobeinapostmenarchealstatewiththeovariancyclebetweendays5thto 11th[17];(4)tonotbeundercontraceptivesormenstrualcyclepharmacologicalregulators treatment.Samplesizewascalculatedtodetectaneffectsize(ES)=0.5,withanestimatedsam- plestandarddeviation(SD)=7.0,andaSDforchanges=0.7,requiringaminimumof15sub- jectspergroup.Power(P=1–β)wassetat0.80,andtheconfidenceintervalwasα=0.05. Forty-nineathleteswereselected(C ,n=34;J,n=15).Allsubjectsvoluntarilyparticipatedin o r thestudyanddeliveredwritteninformedconsent,withparentalpermissionwhenneeded.The studywasconductedfollowingtheWMAHelsinkiDeclarationStatement[18]andapproved bytheEthicsCommitteeforClinicalSportResearchofCatalonia.Thecharacteristicsofthe participantsareshowninTable1. Studydesign Thispre-postquasi-experimentalstudywasbothdescriptiveandcorrelationalandaimedto approachthetopicfromanecologicalperspective.Thestudyanalyzedtheacuteadaptations inducedbysynchronizedswimmingtrainingsessiononbodymass–BM(kg),bioelectricalvec- torvariables[resistance(R,Ω),resistanceadjustedbyheight(R/h,Ω/m),reactance(Xc,Ω), reactanceadjustedbyheight(Xc/h,Ω/m),impedancemodule(Z,Ω),andphaseangle(PA,˚)] andtheextracellularwater/totalbodywaterratio(ECW:TBW,%).Inadditiontotheseinde- pendentvariables,severalotherswererecordedtocharacterizethesample(Table1)andthe training(Table2). Procedures ThestudywasconductedtwoweeksbeforetheSpanishNationalSynchronizedSwimming Championship,withinthe4-weekprecompetitivemesocycle.Onetrainingsessionwasper- formedbyeachgrouponthesameday.TheprotocolischronologicallysummarizedinFig1. ToattainastateofeuhydrationpriortoBIAmeasurements[6],swimmerswererequiredto abstainfromcaffeine,alcoholandexercisethedaybeforetheinvestigation[19].Theywere alsoinstructedtodrink3.0Loffluidover24h(2.0Ltobeconsumedbetween6:00p.m.and PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 3/17 BIVAinsynchronizedswimming Table1. Characteristicsofparticipants. Allswimmers Comen Junior Unpairedt-test (95%CI) (95%CI) (95%CI) n=49 n=34 n=15 t p General Age(years) 14.6±1.4 13.9±0.9 16.3±0.6 -10.851 0.0001* (14.2–15.0) (13.6–14.2) (16.0–16.7) Training(h/week) 19.4±7.6 15.0±2.7 30.0±3.8 -15.911 0.0001* (17.4–21.8) (14.0–15.9) (28.0–32.1) Practice(years) 6.9±1.8 5.9±1.1 9.1±1.0 -9.980 0.0001* (6.4–7.4) (5.6–6.3) (8.6–9.7) Anthropometric Height(cm) 163.3±7.6 161.9±8.2 166.3±4.8 -1.943 0.058 (161.1–165.4) (159.0–164.8) (163.7–169.0) BM(kg) 49.1±7.0 47.2±7.0 53.5±5.2 -3.103 0.003* (47.1–51.2) (44.8–49.7) (50.6–56.3) BMI(kg/m2) 18.4±1.8 18.0±1.9 19.3±1.3 -2.514 0.015* (17.9–18.9) (17.3–18.6) (18.6–20.0) Fatmass(%) 16.5±4.4 15.6±4.7 18.6±2.6 -2.382 0.021* (15.2–17.8) (13.9–17.2) (17.2–20.1) Musclemass(%) 38.0±4.7 37.7±5.4 38.8±2.6 -0.722 0.474 (36.7–39.4) (35.8–39.6) (37.3–40.2) Bioelectrical R/h(Ω/m) 319.7±36.7 328.4±38.8 299.9±21.6 3.286 0.002* (309.1–330.2) (314.9–341.9) (287.9–311.9) Xc/h(Ω/m) 39.9±3.9 40.0±4.5 39.6±2.2 0.395 0.695 (38.7–41.0) (38.4–41.5) (38.4–40.8) PA(˚) 7.1±0.5 7.0±0.5 7.5±0.4 -4.166 0.0001* (7.0–7.3) (6.8–7.1) (7.3–7.7) Valuesaremean±SD;BM,bodymass;BMI,bodymassindex;R,resistance;Xc,reactance;PA,phaseangle;h,height;CI,95%confidenceinterval *significantdifferencesbetweencomenandjuniorswimmers(p<0.05). https://doi.org/10.1371/journal.pone.0178819.t001 10:00p.m.)inadditiontotheirhabitualwesterndietarypractices.From10:00p.m.untilthe startofthepre-testnextmorning,nofurtherfluidorfoodintakewasallowed[6].From7:00a. m.to8:00a.m.thefollowingday,aftermonitoringbodyandskintemperatures,pre-training measurementswereperformedinathermoneutralroom(25˚C)toobtainanthropometric (BM)andbioelectricaldata(R,R/h,Xc,Xc/h,PA,Z,andECW:TBW).Immediatelyafter,par- ticipantsconsumedastandardizedbreakfastconsistingof1cheeseandhamsandwich,1plain yogurt,1banana,and220mLofnaturalorangejuice[20].At10:00a.m.,allswimmersper- formedacategory-specifictrainingsessionina50-mindoorpoolwith30mavailableforuse (watertemperature:25–26˚C).ThecharacteristicsofbothtrainingareshowninTable2. Fluidintake(H2O)duringthetrainingwasmonitoredbyacertifieddietician.Swimmers wereinstructedtodrinkasimilaramountofwaterinthemiddleandattheendoftraining. Pre-andpost-training,BIAmeasurementswereconductedafterurinationanddefecation[21] tominimizetheinfluenceoffood/fluidingestion[22]andexercise[23];pre-trainingmeasure- mentswereconductedwhilefasting,andthepost-trainingdatawereobtainedwithinthefirst hourofrecovery.Justaftercompletingthetrainingsession,theratingofperceivedexertion Table2. Characteristicsofthetrainingsessions. Allswimmers Comen Junior Unpairedt-test (95%CI) (95%CI) (95%CI) n=49 n=34 n=15 t p Duration(min) 167.6±28.0 149.6±3.3 208.4±10.3 -21.695 0.001* (159.6–175.7) (148.5–150.8) (202.7–214.1) Internaltrainingload RPE(a.u) 6.6±0.5 6.4±0.5 6.8±0.6 -2.220 0.03* (6.4–6.7) (6.3–6.6) (6.5–7.1) Session–RPE 1102.4±231.3 963.9±78.5 1416±129 -12.572 0.001* (1036.0–1168.9) (963.5–991.3) (1344.8–1488.0) Waterintake(L) 0.6±0.2 0.5±0.2 0.7±0.3 -2.177 0.04* (0.5–0.6) (0.4–0.6) (0.5–0.8) Valuesaremean±SD;RPE,ratingofperceivedexertion(CR-10scale);a.u,arbitraryunits;CI,95%confidenceinterval *significantdifferencesbetweencomenandjuniorswimmers(p<0.05). https://doi.org/10.1371/journal.pone.0178819.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 4/17 BIVAinsynchronizedswimming Fig1.Studyprotocol.˚C,bodyandskintemperaturemeasurements;Pre-T,pre-trainingmeasurements;Post-T,post-trainingmeasurements;RPE, ratingofperceivedexertion;C ,comen;J,junior. o r https://doi.org/10.1371/journal.pone.0178819.g001 (RPE)wasassessedusingtheBorgCR-10scale[24].Finally,aftercheckingthatbodyandskin temperaturesweresimilartothoseregisteredinthepre-trainingmeasurements,thepost- trainingassessmentwasperformed. Anthropometricassessment. BMwasmeasuredtothenearest0.05kgusingacalibrated weighingscale(Seca710,Hamburg,Germany).Height(h)wasmeasuredtothenearest1mm usingatelescopicstadiometer(Seca220,Hamburg,Germany).Bodymassindex(BMI)was calculatedasbodymass/height2(kg/m2).Anthropometricmeasurementsweretakenaccord- ingtothestandardcriteriaofTheInternationalSocietyfortheAdvancementofKinanthropo- metry[25]. Whole-bodybioimpedanceassessment. RandXcweremeasuredusingapreviouslycali- bratedplethysmograph(Z-Metrix,BioparHom,LeBourget-du-Lac,France)thatemitteda 77μAalternatingsinusoidalcurrentatsevenoperatingfrequencies(1,5,50,150,200,250,and 325kHz).The50-kHzsinglefrequencywasselectedforBIVA[26];meanwhile,multi-fre- quencycapabilitieswereusedtoestimatebodycomposition–fatmass(FM)andmusclemass (MM),andtheECW:TBWwascalculatedbyECW/TBW•100.Thedeviceprovidesimpedance valueswithanaccuracyaverageerrorof0.95±1.58%andaveragerepeatabilityerrorsof 0.55±0.38%forallthefrequencyrange(1to1000kHz)[27].Bioelectricalmeasurementswere conductedundercontrolledconditions[14]throughthestandardwhole-body,tetrapolar,dis- talBIAtechnique[28].Theanatomicalsitesforelectrodes(RedDot2660–5,3MCorporate Headquarters,St.Paul,MN,USA)weremarkedwithawaterproofpen[29].Bioelectricalmea- surementswererepeateduntiltheywerestabletowithin1Ω(usuallyuptothreetimeswithin anintervalof20–30s).Theaveragevaluewasusedincalculations[21]. RegardingtheBIVAmethod,thecorrelationbetweenRandXcdeterminestheellipsoidal formofthebivariateprobabilitydistributions(confidenceintervalsforaveragevectorsandtol- eranceforindividualvectors).Thevectordirectionisdefinedasthephaseangle(PA)andis thegeometricrelationshipbetweenRandXc.PAhasbeenvalidatedasanindicatorofcellular health[12,28]andhasbeeninterpretedasanindexoffluiddistributionbetweentheintracel- lularandextracellularcompartments[30],showinganinversecorrelationwiththeECW:TBW [31].Ontheotherhand,thelengthofthevectorindicateshydrationstatusfromfluidoverload (decreasedresistance,shortvector)toexsiccosis(increasedresistance,longervector),anda sidewaysmigrationofthevectorduetoloworhighreactanceindicatesadecreaseorincrease inthedielectricmass(membranesandtissueinterfaces)ofsofttissues[32].Theindividual vectorcanberankedontheRXcpointgraphwithregardtotoleranceellipsesrepresenting 50%,75%and95%accordingtothevaluesofareferencepopulation[14].Acomparison PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 5/17 BIVAinsynchronizedswimming betweenthemeanvectorsofdifferentsampleswiththe95%confidenceellipsescanbeper- formedontheRXcmeangraph.Furthermore,themeanvectordisplacementofagroupwith the95%confidenceellipsepre-topost-interventionwasplottedontheRXcpairedgraph[33]. Temperatureassessment. Core(˚C )andskintemperaturesoftherighthand(˚C ) core hand andfoot(˚C )weremeasuredusingthermistorsconnectedtoadatalogger(Squirrel2010, foot GrantInstrumentsLtd,Cambridge,UK).Allswimmerswereinstructedtotakeacoldshower (ascoldastolerable)for10–15minutespost-training,inordertoreducecutaneousbloodflow andtemperatureandremoveaccumulatedelectrolytes[34].Skintemperature,asasurrogate forcutaneousbloodflow[35],wasmeasuredjustbeforeBIAmeasurements;thisverifiedthe returntotemperaturesclosetothepre-trainingvalues(p<0.05):Pre-˚C :36.8±0.2˚Cvs. core Post-˚C :37.2±0.3˚C;Pre-˚C :29.6±0.8˚Cvs.Post-˚C :29.2±1.1˚C;Pre-˚C : core hand hand foot 29.0±1.2˚Cvs.Post-˚C :28.6±1.0˚C.Ambientairtemperatureandrelativehumidityin foot theindoorpoolareawerealsocontrolled(27.5±0.5˚Cand64.5±1.5%,respectively). Internaltrainingloadassessment. Theindividualsession-RPE(s-RPE)waschosenfor ratingtheperceivedexertionduringtraining[36].TheCR-10RPEscale[24]wasshowntothe swimmersimmediatelyafterthetrainingwascompleted.Scoreswerecomputedbymultiply- ingthedurationofthetrainingbytherelativeRPEvalues.Oneweekbeforethestudy,allpar- ticipantswereassessedrepeatedlyduringatleast3trainingtodiscloselearningeffectsandto improvetheconsistencyofthemeasurements[37]. Statisticalanalysis Descriptivestatistics(mean,SD)werecalculatedforeachindependentvariableandagecategory. Oncethedataweretestedfornormality(Shapiro-Wilkstest),differencesinanthropometric (BM)andbioelectricalvariables(R,Xc,R/h,Xc/h,PAandZ)betweenpre-andpost-training wereanalyzedbytheStudent’spairedt-test.TheStudent’sunpairedt-testwasusedtoanalyze groupdifferencesbetweenagecategories.Whole-bodybioimpedancevectorswereanalyzedby theRXcgraphmethod[14]usingtheBIVAsoftware[38].Eachswimmerwasplottedinthetol- eranceellipses(50%,75%and95%)ofthe14-to15-year-oldhealthyfemaleItalianreference population[39]asthiswasthereferencepopulationclosestinagetooursample.TheBIVA meangraphwasperformedtocomparewhole-bodyvectorsofC vs.J groups,andeachSS o r groupvs.thereferencepopulation.TheBIVApairedgraphwasusedtoanalyzepre-topost- trainingchangesinthevectorsofC andJ.Toexaminethemagnitudeofpre-postratiochanges o r inanthropometricandbioelectricalvariables,deltavalues(Δ,%ofpre)werecalculated.Toesti- matetherelevanceofthesechanges,relativeESwerecalculatedusingCohen’sd.Accordingto Cohen[40],ESwasdefinedassmall,d(cid:20)0.2;medium,d(cid:20)0.5;andlarge,d(cid:20)0.8.Pearson’scor- relationcoefficientwasusedtodeterminepossiblestatisticalassociationsbetweena)PAvs.chro- nologicalageandPAvs.theECW:TBW;andb)ΔBMvs.BIAvectorvariables(ΔR/h,ΔXc/h, ΔPA,ΔZ).Apairedone-sampleHotelling’sT2testwasusedtoanalyzepre-topost-training changesinthevectorthroughthe95%confidenceellipses.Atwo-sampleHotelling’sT2testwas usedtodeterminetheBIAvectordifferencesbetweenC andJ andbetweeneachSSgroupvs. o r thereferencepopulation.P<0.05wasconsideredsignificant. Results DeterminantsofBIAvectordistributionpatterninsynchronized swimmers TheBIVApointgraph(Fig2)indicatedthatswimmersfellmostlyoutsidethe75%tolerance ellipseregardlessofageorcompetitionlevel;inmanycases,theywereoutsidethe95% PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 6/17 BIVAinsynchronizedswimming Fig2.BIVApatternsbeforeandaftertraining.Ontheleftside,scattergramsoftheC andJ individual o r (aswellasthemean)impedancevectors,plottedonthe50%,75%,and95%toleranceellipsesofthe correspondinghealthyfemalereferencepopulation[39]aredisplayedbothforpre-andpost-training(Pre-T andPost-T,respectively).Ontherightside,meanvectordisplacementsofC andJ frompre-topost-training o r areshown.R/h,height-adjustedresistance;Xc/h,height-adjustedreactance;T2,Hotelling’sT2test;p-value (significanceatp<0.05). https://doi.org/10.1371/journal.pone.0178819.g002 toleranceellipse,denotingahigherdensityofbodycellmass(BCM)thanthereferencepopula- tion.DifferencesintheBIAvectorincomparisonwiththereferencepopulationwerefound forC (T2=134.7,p=0.0001)andJ (T2=126.2,p<0.001),aswellasbetweenbothgroupsof o r SSswimmers(T2=17.6,p<0.001)(Fig3). Fig4showsthe50%,75%and95%toleranceellipsescorrespondingtothewholeSSsample (C andJ together):R/h=319.7±36.7Ω/m;Xc/h=39.9±3.9Ω/m;r=0.78. o r Pre-postdifferences TheBIAvectormigration(Fig2)wascharacterizedbyanincreaseinR/handXc/h,indicating milddehydrationaftertrainingbothinC (T2=82.1)andJ (T2=41.8)(p<0.001).Thiswas o r paralleledbyadecreaseinBMinbothgroupsofswimmers(p=0.0001)asshowninTable3. Incontrast,allbioelectricalvariablessignificantlyincreased(Table3). BIVAcorrelations Apositivecorrelation(r=0.45,p=0.001)wasfoundbetweenPAandchronologicalageinthe wholeSSsample.Additionally,PAwasnegativelyrelated(r=-0.91;p<0.001)totheECW: TBW.NocorrelationswereobservedbetweenbioelectricalpretopostchangesinrelationtoBM. Discussion Thisstudyshowedthatsynchronizedswimmersexperiencedamodestlevelofdehydration afteranintensetrainingsession(BMloss~0.6–0.8%BM)thatwasdetectedbyBIVA.In addition,wereportaspecificBIAvectordistributionintheseyoungeliteSSswimmersincom- parisonwithahealthy,nonathleticreferencepopulationofsimilarage.Infact,thisisthefirst PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 7/17 BIVAinsynchronizedswimming Fig3.RXcmeangraph.The95%confidenceellipsesforthemeanimpedancevectorsofC (dottedline o ellipse),J (darkdashedlineellipse)andthehealthyfemalereferencepopulation(solidlineellipsewithvector) r [39]areshown.R/h,height-adjustedresistance;Xc/h,height-adjustedreactance;C ,comen;J,junior;SS, o r synchronizedswimmers. https://doi.org/10.1371/journal.pone.0178819.g003 timethatspecificreferencedistributionellipsesinafemalesportinggroupisbeingreported (Fig4). BIVAallowsforananalysisofboththehomeostaticstateandpossibleBIAvectormigra- tion,arisingfromanyvariationinbodyfluid[12,26].Nowadays,BIVAisawidelyusedtech- niqueinmedicineasavalidtoolintheassessmentofdifferentphysiologicalstatesandclinical conditionsinwhicheuhydrationisfrequentlyaltered,suchasrenaldisease[41],criticallyill patients[42],pulmonarydisease[43],heartfailure[44],gastrointestinaldisease[45],andpreg- nancyandpostpartum[46].Itspropertiesareespeciallyinterestingforhydrationassessments inboththetrainingprocessandcompetitivesportingevents[16,47]. Nevertheless,inprotocolsmeasuringparametersbeforeandafterexercisetoanalyzeacute vectorshifts,certainfactorsthatmaygenerateerrorsinthebioelectricalsignalshouldbecon- trolledinordertoprovideaccurateandreliableresults,including:skinpreparation[48];previ- oushydrationstatus[49];previousconsumptionoffoodorbeverage[35,50,51];body positionandpostureduringmeasurements[21,51,52];electrodeimpedance[53],position andplacementmodification[51,52];timeofbodyfluidstabilization[54,55];variationsin cutaneousbloodflowandtemperature[35,52];skinelectrolyteaccumulationproducedby physicalexercise[35];reproducibilityofbioelectricalmeasurementsinfluencedbybiological intra-day[56]andinter-dayvariations[50];environmentalconditions[21,52];menstrual cycle[17,57];andinjurycondition[58]. PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 8/17 BIVAinsynchronizedswimming Fig4.Toleranceellipses.50%,75%,and95%toleranceellipsesgeneratedoftheentiregroupof synchronizedswimmers.R/h,height-adjustedresistance;Xc/h,height-adjustedreactance. https://doi.org/10.1371/journal.pone.0178819.g004 Despitetheecologicaldesignofthisresearch,thestudyprotocolattemptedtocontrolthese factors.Asmentionedabove,ingestionofamealorbeveragehasaninfluenceonZ,which maydecreaseovera2-to4-hperiodafterameal,generallyrepresentingachangeof<3%inZ values[22].Therefore,inourstudy,post-exerciseBIVAmeasurementscouldhavebeeninflu- encedbybreakfastandwaterintakeinthemiddleofthetrainingsession,possiblyunderesti- matingZvaluesby~9–10Ω.Theamountofwaterintakeattheendofthetrainingshouldnot haveaffectedtheBIVAmeasurementsbecausetherecentingestionofamealorbeverage(<1 hfromtheingestiontoBIAmeasurements)appearstobe"electricallysilent"andtohavea minimaleffectonwhole-bodyZ[59].Withregardtothetemperaturecontrol,itisknownthat every1.0˚CincreaseintheskincanleadtoadecreaseinRofupto~11%[60].Possiblepre- postBIAdifferencesrelatedtoenvironmentalandcutaneoustemperaturesoftheswimmers werecontrolled,acceptingincreasesordecreaseslowerthan1˚Cas,inthisrangeofvalues,dif- ferencesinZappearnottobesignificant[61].Finally,itshouldbenotedthatthestudysample wascomposedoffemaleathletes.Thus,tominimizethebodyfluidfluctuationscausedbythe effectoffemalehormonalkinetics[17]andconsequentchangesinperformanceability[62], internationalrecommendationswerefollowed[28,57].Thus,thoseswimmerswhowereina premenstrualphase(lutealorsecretoryphase)orwhoweretakingcontraceptivesand/ormen- strualcyclepharmacologicregulatorswereexcluded. PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 9/17 BIVAinsynchronizedswimming Table3. Anthropometricandbioelectricalparametersbefore(Pre)andafter(Post)training. Pre Post Δ-value Pairedt-test p-value Cohen’sd (95%CI) (95%CI) % t p d Comen(n=34) Anthropometric BM(kg) 47.2±7.0 46.9±7.0 -0.8±0.6 8.081 0.0001* 0.20a (44.8–49.7) (44.5–49.3) Bioelectrical R(Ω) 529.5±46.1 548.8±48.5 3.7±3.0 -7.251 0.0001* 0.39b (513.4–545.6) (531.9–565.7) Xc(Ω) 64.4±5.1 67.7±5.0 5.2±3.3 -9.193 0.0001* 0.67c (62.7–66.2) (66.0–69.5) R/h(Ω/m) 328.4±38.8 340.5±41.0 3.7±3.0 -7.104 0.0001* 0.30b (314.9–341.9) (326.1–354.8) Xc/h(Ω/m) 40.0±4.5 42.0±4.6 5.2±3.3 -8.905 0.0001* 0.43b (38.4–41.5) (40.4–43.6) PA(Ω) 7.0±0.5 7.1±0.5 1.5±2.5 -2.863 0.007* 0.20a (6.8–7.1) (6.9–7.2) Z(Ω/m) 330.9±38.9 343.1±41.2 3.7±3.0 -7.178 0.0001* 0.20a (317.2–344.4) (328.7–357.4) r(R/h,Xc/h) 0.84 0.84 — — — Junior(n=15) Anthropometric BM(kg) 53.5±5.2 53.2±5.1 -0.6±0.4 4.634 0.0001* 0.17a (50.6–56.3) (50.3–56.0) Bioelectrical R(Ω) 498.5±35.1 518.5±38.9 4.0±3.3 -4.870 0.0001* 0.53c (479.1–518.0) (497.0–540.1) Xc(Ω) 65.8±2.9 70.2±4.8 6.6±3.9 -6.447 0.0001* 0.82c (64.2–67.4) (67.5–72.8) R/h(Ω/m) 299.9±21.6 311.9±23.4 4.0±3.3 -4.864 0.0001* 0.53c (287.9–311.9) (298.9–324.9) Xc/h(Ω/m) 39.6±2.2 42.2±3.4 6.6±3.9 -6.352 0.0001* 0.62c (38.4–40.8) (40.3–44.1) PA(Ω) 7.5±0.4 7.7±0.4 2.4±3.3 -2.909 0.011* 0.45b (7.3–7.8) (7.5–7.9) Z(Ω/m) 302.5±21.7 314.8±23.5 4.1±3.3 -4.928 0.0001* 0.51c (290.5–314.5) (301.7–327.8) r(R/h,Xc/h) 0.66 0.76 — — — Valuesarethemean±standarddeviation;BM,bodymass;R,resistance;Xc,reactance;h,height;PA,phaseangle;Z,impedancevectormodule;r, PearsoncorrelationcoefficientbetweenR/handXc/h;%Δ,percentdifferencesPretoPost;CI,95%confidenceinterval *significantdifferencesbetweenPreandPost,p-value<0.05(pairedt-testPrevs.Post);a,smalleffectsize((cid:20)0.2);b,mediumeffectsize(d(cid:20)0.5);c, largeeffectsize(d(cid:20)0.8). https://doi.org/10.1371/journal.pone.0178819.t003 BIAvectorchangesevokedbytraining ThisstudyisthefirsttouseBIVAtocharacterizevariationsinhydrationstatusinyoungSS athletesevokedbytraining.RXcpairedgraphsshowedsignificantvectorchangesafterexercise inbothgroups(Fig2),whichwereinterpretedasmilddehydration(averageloss<1%BM) [63].Nevertheless,nocorrelationwasobservedbetweenchangesinBMandBIAvectormigra- tion.Thiscouldbeduetothefluidintakeoftheathletesduringtraining,whichwasmain- tainedduetotheecologicalstudydesign.Arecentinvestigationinwhichnofood/fluidintake wasallowedfoundsimilarresultswithexercise-induceddehydration[29].Theresearchers notedthatthiscouldbeinfluencedbyinadequatecriteriaforstablebioelectricalimpedance measurementsorbyexercise-relatedfactors,suchassweatrate,respiratorywaterlossandoxi- dativewaterproduction,thatmayleadtoBMlosswithoutaneffectivenetnegativefluidbal- ance[64].However,theseresultsdifferfromotherstudies[65,66]thatfoundasignificant relationshipbetweenchangesinbioelectricalvaluesandBMinducedpassivelyand/orchroni- cally.Itispossiblethatgreaterchangescouldhavebeenobservediftheswimmershadnot ingestedfluidsduringthelongandintensetraining(Table2).Nevertheless,nosignificantrela- tionshipswerefoundwithBMinthepresentstudy. PLOSONE|https://doi.org/10.1371/journal.pone.0178819 June7,2017 10/17

Description:
Bioelectrical impedance vector analysis (BIVA) has emerged as a relatively . Bioelectrical impedance analysis; BMI, Body mass index Andreoli A, Monteleone M, Van Loan M, Promenzio L, Tarantino U, De Lorenzo A. Effects of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.