ebook img

Benford's Law and the Universe PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Benford's Law and the Universe

Benford’s Law in Astronomy Theodoros Alexopoulos∗ National Technical University of Athens Stefanos Leontsinis† National Technical University of Athens Brookhaven National Laboratory (Dated: September11, 2014) Benford’s law predicts the occurrence of the nth digit of numbers in datasets originating from 4 1 various sources all over the world, ranging from financial data to atomic spectra. It is intriguing 0 that although many features of Benford’s law havebeen proven,it is still not fully mathematically 2 understood. Inthis paperweinvestigate thedistances of galaxies andstars bycomparing thefirst, second and third significant digit probabilities with Benford’s predictions. It is found that the p distancesofgalaxiesfollowthefirstdigitlawreasonablewell,andthatthestardistancesagreevery e well with the first,second and third significant digit. S 0 1 I. INTRODUCTION [12]. For example, if the dataset contains lengths, the probability of the first significant digits is invariant in ] h In 1881 the astronomer and mathematician S. New- the case that the units are chosen to be meters, feet or p combmadearemarkableobservationwithrespecttolog- miles. - arithmic books [1]. He noticed that the first pages were Still, Benford’s law is not fully understoodmathemat- p morewornoutthanthe last. Thisledhimtotheconclu- ically. A great step was done with the extension of scale o p sionthatthesignificantdigitsofvariousphysicaldatasets to base invariance (the dependance of the base in which . arenotdistributedwithequalprobabilitybutthesmaller numbers are written) by Theodore Hill [13]. Combin- s c significant digits are favored. In 1938 F. Benford contin- ingthese features andrealisingthatallthe datasetsthat i ued this study and he derived the law of the anomalous follow Benford’s law are a mixture from different distri- s y numbers [2]. butions, he made the most complete explanation of the h The generalsignificant digit law [3] for all k ∈N, d1 ∈ law. Another approach in the explanation of the loga- p {1,2,...,9} and dk ∈{0,1,...,9}, for k ≥2 is rithmic law was examined by Jeff Boyle [14] using the [ Fourier series method. 2 k −1 v 4 P(d1,d2,...,dk)=log10 1+ di×10k−i II. NEW NUMERICAL SEQUENCES AND 9  i=1 !  BENFORD’S LAW X 7  (1) 5 wheredk isthekth leftmostdigit. Forexample,theprob- A simple example of Benford’s law is performed on . 1 ability to find a number whose first leftmost digit is 2, numerical sequences. It is already proven that the Fi- 0 second digit is 3 and third is 5 is P(d1 =2,d2 =3,d3 = bonacci and Lucas numbers obey the Benford’s law [15]. 4 5)=log10(1+1/235)=0.18%. The three additional numerical sequences considered in 1 For the first significant digit can be written as this paper are: : v i • Jacobsthal numbers (Jn), defined as X 1 P(k)=log 1+ , k =1,2,...,9 (2) r 10 k – J0 =0 a (cid:18) (cid:19) Thislawhasbeentestedagainstvariousdatasetsrang- – J1 =1 ingfromstatistics[4]togeophysicalsciences[5]andfrom – Jn =Jn−1+2Jn−2, ∀ n>1 financial data [6] to multiple choice exams [7]. Studies werealsoperformedinphysicaldatalikecomplexatomic • Jacobsthal-Lucas numbers (JLn), defined as spectra [8], full width of hadrons [9] and half life times – JL0 =2 for alpha and β decays [10, 11]. Aninterestingpropertyofthislawisthatitisinvariant – JL1 =1 underthechoiceofunitsofthedataset(scaleinvariance) – JLn =JLn−1+2JLn−2, ∀ n>1 • and Bernoulli numbers (Bn), defined by the con- tour interval ∗ [email protected][email protected] – B0 =1 2 A sam–pleBonf=th2enπ!fiirHstez1z−0100zndn+zu1mbers of these sequences bability0.03.54 FFSiierrcssott nDDdiigg Diitti gMBieet naMfsoeurardseudred is used to extract the probabilities of the first significant pro 0.3 STheicrodn Ddi gDiitg Mite Baesnufroerdd Third Digit Benford digittotakethevalues1,2,...,9andthesecondandthird 0.25 significant digits to be 0,1,...,9. The results can be seen 0.2 in figure 1. Full circles represent the result from the analysisoftheJacobsthalandJacobsthal-Lucasnumbers 0.15 andtheemptycirclesindicatetheprobabilitiescalculated 0.1 from Benford’s formula (equation 1). It is clear that all 0.05 threesequencesfollowBenford’slawforthefirst(black), 0 second (red) and third (blue) significant digit. 0 1 2 3 4 5 6 7 8 9 In the following sections we examine the distances of significant digit starsandgalaxiesandcomparetheprobabilitiesofoccur- (a) rence of the first, second and third significant digit with Benford’s logarithmic law. If the locationof the galaxies y 0.4 in our universe and the stars in our galaxy are caused abilit0.35 FFiirrsstt DDiiggiitt MBeenafsourrded by uncorrelated random processes, Benford’s law might prob 0.3 SSTheeiccroodnn Dddi gDDiiitgg Miitte MBaeesnaufsroeurdrded not be followed because each digit would be equiproba- Third Digit Benford ble to appear. To our knowledge this is the first paper 0.25 that attempts to correlatecosmologicalobservableswith 0.2 Benford’s law. 0.15 0.1 III. APPLICATIONS TO ASTRONOMY 0.05 0 0 1 2 3 4 5 6 7 8 9 Cosmological data with accurate measurements of ce- significant digit lestial objects are available since the 1970s. We examine if the frequencies of occurrence of the first digits of the (b) distances of galaxies and stars follow Benford’s law. y 0.4 babilit0.35 First Digit Measured o A. Galaxies pr 0.3 First Digit Benford 0.25 Weusethemeasureddistancesofthegalaxiesfromref- 0.2 erences[16,87]. Thedistancesconsideredonthisdataset 0.15 are based on measurements from type II Supernova and alltheunitsarechosentobeMpc. Thetype-IIsupernova 0.1 (SNII) radio standard candle is based on the maximum 0.05 absolute radio magnitude reached by these explosions, 0 which is 5.5 ×1023ergs/s/Hz. 0 1 2 3 4 5 6 7 8 9 The total number of galaxies selected is 702 with dis- significant digit tances reaching 1660Mpc (see figure IIIA left). The re- (c) sultscanbeseeninfigure3(a)wherewithopencircleswe notate Benford’s law predictions and the measurements FIG. 1. Comparison of Benford’s law (empty circles) pre- withthecircle. Unfortunatelyduetolackofstatisticsthe dictions and the distribution of the first, second and third secondandthethirdsignificantdigitcannotbeanalyzed. significant digit of the (a) Jacobsthal, (b) Jacobsthal-Lucas The trend of the distribution tends to follow Benford’s and (c) Bernoulli sequences (full circles). The probabilities prediction reasonably well. for the first digit is plotted with black, the second with red and thethird with blue circles according to Benford’s law. B. Stars The information for the distances of the stars is taken fromtheHYGdatabase[88]. Inthislist115256starsare be seen in figure 3(b). The first (black full circles) and included, with distances reaching up to 14kpc. The full especiallythesecond(redfullcircles)andthethird(blue dataset used for the extraction of the result can be seen full circles) significant digits follow well the probabilities infigureIIIA.Theresultafteranalysingthisdatasetcan predicted by Benford’s law (empty circles). 3 axies120 Stars10000 IV. SUMMARY mber of Gal10800 Number of 8000 u 6000 The Benford law of significant digits was applied for N 60 the firsttime toastronomicalmeasurements. Itis shown 40 4000 thatthestellardistancesintheHYGdatabasefollowthis 20 2000 law quite well for the first, second and third significant digits. Also,the probabilities ofthe firstsignificantdigit 00 0.5 1 1.5 2 2.5 3 00 2 4 6 8 10 12 14 of galactic distances using the Type II supernova pho- Distance [Gpc] Distance [kpc] tosphere method is in good agreement with the Benford distribution; however, the errors are sufficiently large so FIG. 2. Complete dataset from where the measurements for thegalaxies (left) and stars (right) is shown. thatadditionaldigitscannotbeanalyzed. Wenote,how- ever,that the plots in figure IIIA indicate that selection effects due to the magnitude limits of both samples may bability0.03.54 First Digit Measured besetarbeslipsohnedsi.bTlehfeorreftohriesibteishanveicoeussraarnydtosoreipteiastnthoitsfisrtumdlyy pro 0.3 First Digit Benford usingdifferentgalacticdistancemeasuresandlargercat- alogsof both galaxiesandstars to see if the Benfordlaw 0.25 is still followed when larger distances are probed. Such 0.2 larger samples of galaxies would also allow the examina- 0.15 tion of second and perhaps third significant digits. 0.1 0.05 0 0 1 2 3 4 5 6 7 8 9 Significant digit of galaxy distances (a) y 0.4 abilit0.35 FFiirrsstt DDiiggiitt MBeenafsourrded b Second Digit Measured pro 0.3 STheicrodn Ddi gDiitg Mite Baesnufroerdd ACKNOWLEDGMENTS Third Digit Benford 0.25 0.2 0.15 We wouldliketo thank I.P.Karananasforthe lengthy 0.1 discussions on this subject. We would like also to thank Emeritus Professor Anastasios Filippas, the editor of 0.05 JOAA and the reviewer for the valuable comments and 0 0 1 2 3 4 5 6 7 8 9 suggestions. Sigificant digit of star distances (b) The present work was co-funded by the European Union (European Social Fund ESF) and Greek na- FIG.3. ComparisonsofBenford’slaw(emptycircles)andthe tional funds through the Operational Program ”Educa- distributionofthefirst(black),second(red)andthird(blue) tion and Lifelong Learning” of the National Strategic significant digit of the distances of the (a) galaxies and (b) Reference Framework (NSRF) 2007-1013. ARISTEIA- stars (full circles). 1893-ATLAS MICROMEGAS. [1] S.Newcomb,Noteonthefrequencyofuseofthedifferent 327 (1995) digits in natural numbers, Am.J. Math., vol4, No.1/4, [4] L. Shao and B. Q. Ma, First-digit law in nonextensive 39-40 (1881) statistics, Phys. Rev.E, vol 82, 041110 (2010) [2] F. Benford, The law of anomalous numbers, Proc. Am. [5] A.S.DeandU.Sen,Benford’slawdetectsquantumphase Phil. Soc. 78, 551-572 (1938) transitionssimilarlyasearthquakes,Europhys.Lett.,vol [3] TheodoreP.Hill,Thesignificant-digit phenomenon, The 95, 50008 (2011) American Mathematical Monthly, vol 102, No. 4, 322- [6] P.ClippeandM.Ausloos,Benford’slawandTheiltrans- 4 form on financial data, arXiv:1208.5896v1 (2012) p.1292 (1992) [7] F. M. Hopee, Benford’s law and distractors in multiple [25] Schmidt-Kaler,T.,TheDistancetotheLargeMagellanic choice exams, arXiv:1311.7606 (2013) CloudfromObservationsofSN1987A,VariableStarsand [8] J. C. Pain, Benford’s law and complex atomic spectra, Galaxies, in honour of M. W. Feast on his retirement, Phys.Rev.E, vol77, 012102 (2008) ASP Conference Series, vol 30, B. Warner, Ed., p. 195 [9] L. Shaoand B. Q. Ma, First digit distribution of hadron (1992) full width, Mod. Phys.Lett. A 24, 3275-3282 (2009) [26] BrianP.Schmidtetal.,Theunusualsupernova SN1993J [10] B.Bucket al.,An illustration of Benford’s first digit law in the galaxy M81, Nature 364, 600 - 602 (1993) using alpha decay half lives, Eur. J. Phys.14, 59 (1993) [27] Brian P. Schmidt et al., Type II Supernovae, Expanding [11] NI Dong-Dong et al., Benford’s law and β-decay half- Photospheres, andtheExtragalactic DistanceScale,The- lives, Commun. Theor. Phys., vol 51, No. 4, 713-716 sis (PH.D.) - Harvard University, 1993. Source: Disser- (2009) tation Abstracts International, Volume: 54-11, Section: [12] M. R. Wojcik, Notes on scale-invariance and base- B, page: 5717 (1993) invariance for Benford’s Law, arXiv:1307.3620 (2013) [28] Fernley J. et al., The absolute magnitudes of RR Lyraes [13] T. P. Hill, Base-Invariance Implies Benford’s Law, Pro- from HIPPARCOS parallaxes and proper motions., As- ceedings of the American Mathematical Society 123.3, tron. Astrophys., vol 330, 515-520 (1998) 887-895 (1995) [29] Panagia, N., New Distance Determination to the LMC, [14] J. Boyle, An application of Fourier series to the most MemoriedellaSocietaAstronomiaItaliana,vol69,p.225 significant digit problem, The American Mathematical (1998) Monthly,vol101, No. 9, pp.879-886 (1994) [30] Garnavich,P.etal.,Supernova 1987A inthe LargeMag- [15] J.Wlodarksi, Fibonacci and Lucas numbers tend to obey ellanic Cloud, IAU Circ., 7102, 1 (1999) Benford’s law,Westhoven,FederalRepublicofGermany [31] Panagia N., Distance to SN 1987 A and the LMC, New (1971) Views of the Magellanic Clouds, IAUSymposium #190, [16] Gurugubelli et al., Photometric and spectroscopic evolu- Edited by Y.-H. Chu, N. Suntzeff, J. Hesser, & D. tion of type II-P supernova SN 2004A, Bulletin of the Bohlender. ISBN:1-58381-021-8, p.549 (1999) Astronomical Society of India, 36 (2-3), 79-97 (2008) [32] Leonard, Douglas C. et al., A Study of the Type II- [17] Bartel N., Angular diameter determinations of radio su- Plateau Supernova 1999gi and the Distance to its Host pernovae and the distance scale, Supernovae as distance Galaxy, NGC 3184,TheAstronomicalJournal,vol 124, indicators; Proceedings of the Workshop, Cambridge, Issue 5, pp.2490-2505 (2002) MA, September 27, 28, 1984 (A86-38101 17-90). Berlin [33] Dessart, L. et al., Quantitative spectroscopic analysis of and New York,Springer-Verlag, 107-122 (1985) anddistancetoSN1999em AstronomyandAstrophysics, [18] Bartel N., Hubble’s constant determined using very-long vol 447, Issue 2, pp.691-707 (2006) baselineinterferometryofasupernova,Nature318,25-30 [34] Takats V. J., Improved distance determination to M 51 (1985) from supernovae 2011dh and 2005cs, Astronomy & As- [19] ChugajN.N.,Supernova1987A-HaProfileandtheDis- trophysics, vol 540, id.A93, 7 pp.(2012) tance of the Large Magellanic Cloud, Astronomicheskii [35] Sonnenorn G. et al., The Evolution of Ultraviolet Emis- Tsirkulyar NO.1494/MAY (1987) sion Lines from Circumstellar Material Surrounding SN [20] Hoeflich, P., Model calculations for scattering dominated 1987A, The Astrophysical Journal, vol 477, 848-864 atmospheres and the use of supernovae as distance indi- (1997) cators, Nuclear astrophysics; Proceedings of the Work- [36] GouldA.etal.,UpperLimittotheDistance totheLarge shop, Tegernsee, Federal Republic of Germany, Apr. Magellanic Cloud, The Astrophysical Journal, vol 494, 21-24, 1987 (A89-10202 01-90). Berlin and New York, 118-124 (1998) Springer-Verlag, 307-315 (1987) [37] Romaniello M. et al., Hubble Space Telescope Observa- [21] R.V.Wagoneretal.,Supernova1987A:ATestoftheIm- tions of the Large Magellanic Cloud Field Around SN proved Baade Method of Distance Determination, BAAS 1987A: Distance Detetrmination with Red Clump and 08/1988; 20:985 (1988) Tup of the Red Giant Branch Stars The Astrophysical [22] Bartel N., Determinations of distances to radio sources Journal, vol 530, 738-743 (2000) withVLBI,TheimpactofVLBIonastrophysicsandgeo- [38] Hamuy M. et al., The Distance to SN 1999em from the physics;Proceedingsofthe129thIAUSymposium,Cam- ExpandingPhotosphere Method,TheAstrophysicalJour- bridge, MA, May 10-15, 1987 (A89-13726 03-90). Dor- nal, vol 558, 615-642 (2001) drecht,Kluwer Academic Publishers, 175-184 (1988) [39] Mitchell R. C. et al., Detailed Spectroscopic Analysis [23] Chilukuri,M.etal.,Type-IISupernovaPhotospheres and of SN 1987A: The Distance to the Large Magellanic theDistance toSupernova 1987A,AtmosphericDiagnos- Cloud Using the Spectral-Fitting Expanding Atmosphere ticsofStellarEvolution.ChemicalPeculiarity,MassLoss, Method, The Astrophysical Journal, vol 574, 293-305 and Explosion. Proceedings of the 108th. Colloquium of (2002) the International Astronomical Union, held at the Uni- [40] BartelN.etal.,SN1979CVLBI:22YearsofAlmostFree versity of Tokyo, Japan, September 1-4, 1987. Lecture Expansion,TheAstrophysicalJournal,vol 591,301-315 Notes in Physics, Volume305, Editor, K. Nomoto; Pub- (2003) lisher,Springer-Verlag,Berlin, NewYork,1988. ISBN# [41] LeonardD.C.etal.,TheCepheidDistancetoNGC1637: 3-540-19478-9. LC # QB806 .I18 1987, P. 295, (1987) A DirectTestoftheExpandingPhotosphere Method Dis- [24] Schmidt, B. P., Expanding Photospheres of Type II Su- tance to SN 1999em, The Astrophysical Journal, vol pernovaeandtheExtragalactic DistanceScale,American 594, 247-278 (2003) Astronomical Society, 181st AAS Meeting, #107.04D; [42] NugentP.etal.,TowardaCosmological HubbleDiagram Bulletin of the American Astronomical Society, vol 24, for Type II-P Supernovae, The Astrophysical Journal, 5 vol 645, 841-850 (2006) ical Journal, vol 426, 334-339 (1994) [43] Baron E. et al., Reddening, Abundances and Line For- [64] SchmidtB.P.etal.,TheDistancetoFiveTypeIISuper- mation in SNe II, The Astrophysical Journal, vol 662, novae Using the Expanding Photosphere Method and the 1148-1155 (2007) Value of H0, The Astrophysical Journal, vol 432, 42-48 [44] Bartel N. et al., SN 1993J VLBI. IV. A Geometric Dis- (1994) tance to M81 with the Expanding Shock Front Method, [65] Sparks W. B., A Direct Way to Measure the Distances The Astrophysical Journal, vol 668, 924-940 (2007) of Galaxies, The Astrophysical Journal, vol 433, 19-28 [45] DessartL.etal.,Using Quantitative Spectroscopic Anal- (1994) ysis to Determine the Properties and Distances of Type [66] Branchini E. et al., Testing the Lease Action Principle II Plateau Supernovae: SN 2005cs and SN 2006bp, The in an Ω0 = 1 Universe, The Astrophysical Journal, vol Astrophysical Journal, vol 675, 644-669 (2008) 434, 37-45 (1994) [46] Poaznanski D. et al., Improved Standardization of Type [67] Iwamoto K.etal., Theoretical Light Curves for the Type II-P Supernovae: Application to an Expanded Sample, Ic Supernova SN 1994I, The Astrophysical Journal, vol The Astrophysical Journal, vol 694, 1067-1079 (2009) 437, 115-118 (1994) [47] Jones M. I. et al., Distance Determination to 12 Type [68] CrottsA.P.S.,etal.,The CircumstellarEnvelope of SN IISupernovae UsingtheExpandingPhotosphere Method, 1987A. I. The Shape of the Double-Lobed Nebula and its The Astrophysical Journal, vol 696, 1176-1194 (2009) Rings and the Distance to the Large Maggelanic Cloud, [48] KasenD.etal.,TypeIISupernovae: ModelLightCurves The Astrophysical Journal, vol 438, 724-734 (1995) and Standard Candle Relationships, The Astrophysical [69] Baron E., et al., Non-LTE Spectral Analysis and Model Journal, vol 703, 2205-2216 (2009) Constraints on SN 1993J, The Astrophysical Journal, [49] D’Andrea C. B. et al., Type II-P Supernovae from the vol 441, 170-181 (1995) SDSS-II Supernova Survey and the Standardized Candle [70] Clocchiatti A., et al., Spectrophotometric Study of SN Method, The Astrophysical Journal, vol 708, 661-674 1993J at First Maximum Light,TheAstrophysicalJour- (2010) nal, vol 446, 167-176 (1995) [50] OlivaresF.E.etal.,TheStandardizedCandleMethodfor [71] Gould A., Supernova Ring Revisited. II. Distance to the type II Plateau Supernovae, The Astrophysical Journal, Large Magellanic Cloud, TheAstrophysical Journal, vol vol 715, 833-853 (2010) 452, 189-1994 (1995) [51] Roy R. et al., SN 2008in - Bridging the Gap Between [72] RichmondM.W.,etal.,UBVRI PhotometryoftheType Normal and Faint Supernovae of Type IIP, The Astro- IcSN1994IinM51,TheAstronomicalJournal,vol111, physicalJournal, vol 736, 76 (2011) Number1 (1996) [52] SchmidtB.P.etal.,TheExpandindPhotosphere Method [73] Eastman R. G., et. al., The Atmospheres of Type II Su- Applied to SN 1992am At cz =14600km/s, The Astro- pernovae and the Expanding Photosphere Method, The nomical Journal, vol 107, 4 (1994) Astrophysical Journal, vol 466, 911-937 (1996) [53] Kirshner R. P. at al., Distances to Extragalactic Super- [74] Botticella M.T.etal.,Supernova 2009kf: An Ultraviolet novae,TheAstrophysicalJournal,vol193,27-36(1974) Bright Type IIP Supernova Discovered with Pan-Starrs [54] Branch D.et al., The Type II Supernova 1979c in M100 1 and GALEX, The Astrophysical Journal Letters, vol andtheDistancetotheVirgoCluster,TheAstrophysical 717, 52-56 (2010) Journal, vol 244, 780-804 (1981) [75] LeonardD.C.etal.,TheDistancetoSN1999eminNGC [55] Panagia N. et al., Subluminous, Radio Emitting Type I 1637 from the Expanding Photosphere Method, Publica- Supernovae, The Astrophysical Journal, vol 300, 55-58 tionsoftheAstronomicalSocietyofthePacific,vol114, (1986) 35-64 (2002) [56] Eastman R. G. et al., Model Atmospheres for SN 1987A [76] VanDykS.D.et al.,The Light Echo Around Supernova andtheDistancetotheLargeMagellanicCloud,TheAs- 2003gd in Messier 74, Publications of the Astronomical trophysical Journal, vol 347, 771-793 (1989) Society of thePacific, vol118, 351-357 (2006) [57] SchmutzW.etal.,NON-LTEModelCalculationsforSN [77] Walker A. R., The Distances of the Maggelanic Clouds, 1987A and the Extragalactic Distance Scale, The Astro- arXiv:astro-ph/9808336v1(1998) physicalJournal, vol 355, 255-270 (1990) [78] Hanuschik R. W. et al., Absorption Line Velocities and [58] PanagiaN.etal.,PropertiesoftheSN1987ACircumstel- theDistancetoSupernova1987A,AstronomyandAstro- larRingandtheDistancetotheLargeMagellanicCloud, physics vol 249, 36-42 (1991) The Astrophysical Journal, vol 380, 23-26 (1991) [79] Baron E. et al., Prelimianry spectral analysis of SN [59] Schmidt B. P. et al., Expanding Photospheres of Type 1994I,Mon.Not.R.Astron.Soc.vol279,799-803(1996) II Supernovae and the Extragalactic Distance Scale, The [80] Hendry M. A. et al., SN 2004A: Another Type II-P Su- Astrophysical Journal, vol 395, 366-386 (1992) pernova with a Red Supergiant Progenitor, Mon. Not.R. [60] Baron E., et al., Interpretation of the Early Spectra of Astron. Soc. vol 369, 1303-1320 (2006) SN 1993J in M81, The Astrophysical Journal, vol 416, [81] NadyozhinD.K.,ExplosionEnergies,NickelMassesand 21-23 (1993) Distances of Type II Plateau Supernovae, Mon. Not. R. [61] McCall M. L., The Distance to the Large Magellanic Astron. Soc. vol 346, 97-104 (2003) Cloud from SN 1987A, The Astrophysical Journal, vol [82] VinkoJetal.,TheFirstYearofSN2004djinNGC2403, 417, 75-77 (1993) Mon. Not. R.Astron. Soc. vol 369, 1780-1796 (2006) [62] GouldA.,The Ring Around Supernova 1987A Revisited. [83] TakatsK.etal,Distance Estimate and Progenitor Char- I.Ellipticityof the Ring,TheAstrophysicalJournal,vol acteristics of SN 2005cs in M51, Mon. Not. R. Astron. 425, 51-56 (1994) Soc. vol 372, 1735-1740 (2006) [63] BaronE.etal.,Modeling and Interpretation of the Opti- [84] Fraser M. et al., SN 2009md: Another Faint Supernova cal and HST UV Spectrum of SN 1993J,TheAstrophys- from a Low-Mass Progenitor, Mon. Not.R.Astron.Soc. 6 vol 417, 1417-1433 (2011) R. Astron. Soc. vol 422, 1178-1185 (2012) [85] TakatsK.etal.,Measuring Expansion Velocities inType [87] Elmhamdi A.et al., Photometry and Spectroscopy of the II-P Supernovae, Mon. Not. R. Astron. Soc. vol 419, Type IIP SN 1999em from Outburst to Dust Formation, 2783-2796 (2012) Mon. Not. R.Astron. Soc. vol 338, 939-956 (2003) [86] Inserra C. et al., Quantitative Photospheric Spectral [88] The HYG Database, http://www.astronexus.com, Analysis of the Type IIP Supernova 2007od, Mon. Not. (2011).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.