ebook img

Automata, Universality, Computation: Tribute to Maurice Margenstern PDF

421 Pages·2015·16.765 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Automata, Universality, Computation: Tribute to Maurice Margenstern

Emergence, Complexity and Computation ECC Andrew Adamatzky Editor Automata, Universality, Computation Tribute to Maurice Margenstern Emergence, Complexity and Computation Volume 12 Serieseditors IvanZelinka,TechnicalUniversityofOstrava,Ostrava,CzechRepublic e-mail:[email protected] AndrewAdamatzky,UniversityoftheWestofEngland,Bristol,UnitedKingdom e-mail:[email protected] GuanrongChen,CityUniversityofHongKong,HongKong e-mail:[email protected] EditorialBoard AjithAbraham,MirLabs,USA AnaLuciaC.Bazzan,UniversidadeFederaldoRioGrandedoSul,PortoAlegre RSBrasil JuanC.Burguillo,UniversityofVigo,Spain SergejCˇelikovský,AcademyofSciencesoftheCzechRepublic,CzechRepublic MohammedChadli,UniversityofJulesVerne,France EmilioCorchado,UniversityofSalamanca,Spain DonaldDavendra,TechnicalUniversityofOstrava,CzechRepublic AndrewIlachinski,CenterforNavalAnalyses,USA JouniLampinen,UniversityofVaasa,Finland MartinMiddendorf,UniversityofLeipzig,Germany EdwardOtt,UniversityofMaryland,USA LinqiangPan,HuazhongUniversityofScienceandTechnology,Wuhan,China GheorghePa˘un,RomanianAcademy,Bucharest,Romania HendrikRichter,HTWKLeipzigUniversityofAppliedSciences,Germany JuanA.Rodriguez-Aguilar,IIIA-CSIC,Spain OttoRössler,InstituteofPhysicalandTheoreticalChemistry,Tübingen,Germany VaclavSnasel,TechnicalUniversityofOstrava,CzechRepublic IvoVondrák,TechnicalUniversityofOstrava,CzechRepublic HectorZenil,KarolinskaInstitute,Sweden AboutthisSeries The Emergence,Complexityand Computation(ECC) series publishesnew devel- opments,advancementsandselectedtopicsinthefieldsofcomplexity,computation andemergence.Theseriesfocusesonallaspectsofreality-basedcomputationap- proachesfromaninterdisciplinarypointofviewespeciallyfromappliedsciences, biology, physics, or Chemistry. It presents new ideas and interdisciplinary insight onthe mutualintersectionofsubareasofcomputation,complexityandemergence anditsimpactandlimitstoanycomputingbasedonphysicallimits(thermodynamic and quantumlimits, Bremermann’slimit, Seth Lloyd limits...) as well as algorith- mic limits (Gödel’s proof and its impact on calculation, algorithmic complexity, theChaitin’sOmeganumberandKolmogorovcomplexity,non-traditionalcalcula- tionslike Turingmachineprocessand its consequences,...)and limitationsarising inartificialintelligencefield.Thetopicsare(butnotlimitedto)membranecomput- ing,DNAcomputing,immunecomputing,quantumcomputing,swarmcomputing, analogic computing,chaos computingand computingon the edge of chaos, com- putationalaspectsofdynamicsofcomplexsystems(systemswithself-organization, multiagentsystems,cellularautomata,artificiallife,...),emergenceofcomplexsys- temsanditscomputationalaspects,andagentbasedcomputation.Themainaimof thisseries itto discussthe abovementionedtopicsfroman interdisciplinarypoint ofviewandpresentnewideascomingfrommutualintersectionofclassicalaswell asmodernmethodsofcomputation.Withinthescopeoftheseriesaremonographs, lecture notes, selected contributionsfrom specialized conferencesand workshops, specialcontributionfrominternationalexperts. Moreinformationaboutthisseriesathttp://www.springer.com/series/10624 Andrew Adamatzky Editor Automata, Universality, Computation Tribute to Maurice Margenstern ABC Editor AndrewAdamatzky UnconventionalComputingCentre UniversityoftheWestofEngland Bristol UnitedKingdom ISSN2194-7287 ISSN2194-7295 (electronic) Emergence,ComplexityandComputation ISBN978-3-319-09038-2 ISBN978-3-319-09039-9 (eBook) DOI10.1007/978-3-319-09039-9 LibraryofCongressControlNumber:2014945747 SpringerChamHeidelbergNewYorkDordrechtLondon (cid:2)c SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper [SpringerInternationalPublishingAGSwitzerland]ispartofSpringerScience+BusinessMedia (www.springer.com) Preface A Tribute to MauriceMargenstern A few figures witness Maurice Margenstern’s scientific accomplishments. He au- thored or co-authored 210 papers (some more being on the way...). His 54 co-authors are from all over the world: France, Belgium, Switzerland, Germany, Austria,Italy,Spain,Ireland,UnitedKingdom,Finland,Hungary,Moldavia,Roma- nia,Russia,Israel,China,Malaysia,Japan,Chili,USA.Besideshisresearchpapers, he wrote 6 books, organizedand edited the proceedingsof 8 internationalconfer- ences,supervised5students. And,mostimportantly,hepioneerednewareasofresearchattheintersectionof mathematicsandcomputerscience. HowdidMauricebecomethescientistwesomuchappreciate? Maurice was bornin Parison June 6, 1947.After highschoolhe was accepted in prestigious French “grandes e´coles”. Resigning from the E´cole Polytechnique he entered the E´cole Normale Supe´rieure de Cachan. After he passed the French “agre´gation de mathe´matiques”, he got an academic position at the mathematics departmentoftheUniversityofParis-Sud(Orsay)in1970. Attractedbyconstructivemathematics,thenaverymarginalsubjectinFrance,he wentintheearly70’stoLeningradtostudywithNicola¨ıA.Shanin,thentheheadof the famousRussian schoolin constructivemathematicsfoundedby A.A. Markov. This is where he worked on his thesis on Constructive topological properties of spacesofalmostperiodicfunctions. Thenhisscientificinclinationsgraduallymovedfromconstructivemathematics tocomputability,asubjectthenmuchrevivedafterMatijasevich’sfamousresulton Hilbert’s 10thproblem.In the late 80’s he joined the computerscience laboratory LITP (now LIAFA) in Paris and started his amazing investigation of the simplest (resp.mostcomplex)machineswithanundecidable(resp.decidable)haltingprob- lem.DespitethepreviousworksbyYuriRogogineinMoldaviaandLudmilaPavlot- skaia in Russia, this topic was then rather confidential. Maurice is to be credited forputtingitupasoneoftheimportantthemesincomputability.Hedidsoviahis VI Preface owncontributionsandviaatriennialinternationalconferenceMachines,Computa- tionsandUniversality hesetupin 1995andwhichstill goeson.Irememberhow Josef Gruska (speaking as the last chairman of the first conference,held in Paris) stressedhowmuchenergyMauricehadtoshowinordertocreatefromscratchsuch asuccessfulinternationalevent. MauricepassedhisHabilitationin1994“Studyofthefrontierbetweendecidabil- ity and undecidability of the halting problem of small or constrained Turing ma- chines.”Hewasthenappointedasaprofessorincomputersciencebytheuniversity ofLorraineatMetz.TherehecreatedtheLITAlaboratoryandspentmuchenergy tomakeitasolidresearchcenter.Someyearsago,hewaspromoted“professeurde classeexceptionnelle”,thehighestrankinFrenchAcademia. In the early 2000’s Maurice developed the subject of computation with cellu- lar automata in the hyperbolic world (dimension 2, 3 or 4) and broughtsolutions tolongopendifficulttilingproblems.Besidesthese technicalachievements,Mau- rice provedthathyperboliccomputabilityallowsto overcomeknownunfeasibility resultsoftheEuclideanworld. The classical tool in hyperbolic geometry is the theory of groups but Maurice invented completely new tools: combinatorial ones. As is usual with new ideas, expertsin hyperbolicgeometryshowed reluctancetowardssuch an innovativeap- proach and it was a real relief for Maurice when Donald Knuth wrote to him to expressthathefoundthese newtools“quitefascinating”andwillrefertothemin theArtofComputerProgramming. Ofcourse,thetwothemespresentedabovedonotexhaustthesubjectsMaurice investigatedbuttheywitnesshiscreativetalentandimpressiveenergy. MauricerecentlyretiredandisnowemeritusprofessorattheuniversityofLor- raine.Havingnomoretoteachandmanagearesearchteam,Mauricesimplyspends moretimetocontinueproducingprominentworks. Having had the privilege to know him since the mid 70’s, it is my pleasure to say,inthenameofallcontributorsofthisvolume:Maurice,thankyouforwhatyou haveaccomplishedandlet’scontinueourfriendshipandscientificcollaboration. SergeGrigorieff Paris Contents 1 TheCommonStructureoftheCurvesHaving aSameGaussWord ........................................... 1 BrunoCourcelle 1.1 Introduction............................................. 1 1.2 Definitions.............................................. 4 1.3 AtomsofGraphsandMaps................................ 10 1.4 Planart-Graphsandt-Maps................................ 17 1.5 CurvesinthePlane....................................... 20 1.6 SomeOpenQuestions .................................... 35 References.................................................... 36 Appendix..................................................... 37 2 LogicalTheoryoftheAdditiveMonoidofSubsetsofNatural Integers...................................................... 39 ChristianChoffrut,SergeGrigorieff 2.1 Introduction............................................. 39 2.2 Preliminaries............................................ 41 2.3 UsingSubmonoidstoApproximateandEmulate .............. 48 2.4 ComplexityoftheTheory ................................. 58 2.5 NonDefinablePredicates.................................. 60 2.6 LogicalDefinabilityin(cid:2)P(N);+,=(cid:3) ........................ 68 2.7 RemarkableDefinableSetsandClasses...................... 69 2.8 Conclusion.............................................. 73 References.................................................... 73 3 SomeReflectionsonMathematicsandItsRelationtoComputer Science....................................................... 75 LiesbethDeMol 3.1 MathematicalLogic,theComputerandMathematics .......... 76 3.2 ANumber-Theorist’sPointofView......................... 80 VIII Contents 3.3 The Impact of the Computer on Mathematics: Some QuantitativeResults ...................................... 83 3.4 Computer-AssistedExplorativeMathematics:Characteristics andProblems............................................ 86 3.5 Some(NewandOpen)Problems ........................... 90 3.6 SomeAfterthoughts ...................................... 98 References.................................................... 99 4 SamplingaTwo-WayFiniteAutomaton ......................... 103 ZheDang,OscarH.Ibarra,QinLi 4.1 IntroductionandMotivation ............................... 103 4.2 InformationDependencyandInformationFlowin2NFAs ...... 105 4.3 LanguagePropertiesofSampledRunsofSomeTwo-Way Infinite-StateAutomata ................................... 112 4.4 Conclusions............................................. 114 References.................................................... 114 5 Maurice Margenstern’sContributionsto the Field ofSmall UniversalTuringMachines..................................... 117 TurloughNeary,DamienWoods 5.1 Introduction............................................. 117 5.2 SimulatingtheCollatzFunctionwithSmallTuringMachines ... 118 5.3 FrontiersbetweenUniversalityandNon-universality........... 120 5.4 RestrictedTuringMachines................................ 121 References.................................................... 124 6 ConstructingReversibleTuringMachinesbyReversibleLogic ElementwithMemory......................................... 127 KenichiMorita 6.1 Introduction............................................. 127 6.2 ReversibleLogicElementwithMemory(RLEM) ............. 128 6.3 RelationtoPhysicalReversibility........................... 130 6.4 ConstructingReversibleTuringMachinesbyRotaryElement ... 132 6.5 ConcludingRemarks ..................................... 137 References.................................................... 137 7 TheGrossoneMethodologyPerspectiveonTuringMachines....... 139 YaroslavD.Sergeyev,AlfredoGarro 7.1 Introduction............................................. 139 7.2 TuringMachines......................................... 141 7.3 TheGrossoneLanguageandMethodology ................... 147 7.4 ObservingTuringMachinesthroughtheLensoftheGrossone Methodology............................................ 153 7.5 ConcludingRemarks ..................................... 165 References.................................................... 167 Contents IX 8 OnParallelArrayPSystems ................................... 171 LinqiangPan,GheorghePa˘un 8.1 Introduction............................................. 171 8.2 DefinitionsandNotations ................................. 172 8.3 ParallelArrayPSystems .................................. 173 8.4 Results ................................................. 175 8.5 ConcludingRemarks ..................................... 180 References.................................................... 181 9 SmallPSystemsDefiningNon-semilinearSets.................... 183 ArtiomAlhazov,RudolfFreund 9.1 Introduction............................................. 183 9.2 Definitions.............................................. 185 9.3 AcceptingPSystems ..................................... 193 9.4 GeneratingbyDoublingintheMaximallyParallelMode ....... 195 9.5 AsynchronousandSequentialPsystems ..................... 202 9.6 PSystemswithCatalysts.................................. 203 9.7 Conclusions............................................. 215 References.................................................... 216 10 GeneralizedCommunicatingPAutomata........................ 219 Erzse´betCsuhaj-Varju´,Gyo¨rgyVaszil 10.1 Introduction............................................. 219 10.2 PreliminariesandDefinitions .............................. 220 10.3 ThePowerofPAutomatawithGeneralizedCommunication.... 226 10.4 Conclusions............................................. 235 References.................................................... 235 11 ComputationalModelsBasedonSplicing ........................ 237 YuriiRogozhin,SergeyVerlan 11.1 Introduction............................................. 237 11.2 SplicingOperationandHSystems .......................... 238 11.3 ControlledSplicing....................................... 241 11.4 DistributedSplicing ...................................... 248 11.5 RefiningtheControl...................................... 253 11.6 Conclusions............................................. 255 References.................................................... 256 12 LinearCellularAutomataandDecidability ...................... 259 KlausSutner 12.1 LinearCellularAutomata ................................. 259 12.2 TheFirst-OrderTheory ................................... 262 12.3 UndecidabilityandHardness............................... 269 12.4 Summary ............................................... 273 References.................................................... 274

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.