ebook img

ASM specialty handbook : nickel, cobalt, and their alloys PDF

414 Pages·2000·19.877 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ASM specialty handbook : nickel, cobalt, and their alloys

© 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Contents Introduction to Nickel and Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . .1 Cleaning and Finishing of Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . .273 High-Temperature Coatings for Superalloys. . . . . . . . . . . . . . . . . . . .281 The Nickel Industry: Occurrence, Recovery, and Consumption. . . . . . .3 Uses of Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Metallography, Microstructures, and Phase Diagrams of Wrought Corrosion Resistant Nickels and Nickel Alloys. . . . . . . . . . .14 Nickel and Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Cast Corrosion Resistant Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . .55 Metallography and Microstructures of Nickel, Nickel-Copper, and Cast Heat Resistant Nickel-Chromium and Nickel-Chromium-Iron Nickel-Iron Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Metallography and Microstructures of Heat Resistant Alloys. . . . . . .298 Superalloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Phase Diagrams of Binary and Ternary Nickel Systems. . . . . . . . . . .331 Special-Purpose Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Nickel Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Introduction to Cobalt and Cobalt Alloys. . . . . . . . . . . . . . . . . . . .343 Corrosion Behavior of Nickel and Nickel Alloys. . . . . . . . . . . . . . .125 The Cobalt Industry: Occurrence, Recovery, and Consumption. . . . .345 Uses of Cobalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Corrosion Behavior of Nickel Alloys in Specific Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Phase Diagrams of Binary and Ternary Cobalt Systems. . . . . . . . . . .356 Stress-Corrosion Cracking and Hydrogen Embrittlement of Cobalt-Base Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 Properties and Fabrication Characteristics of High-Temperature Corrosion Behavior of Nickel Alloys. . . . . . . . . .167 Cobalt and Cobalt Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 Fabrication and Finishing of Nickel and Nickel Alloys . . . . . . . . .189 Properties of Cobalt Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 Forming of Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Wear Behavior of Cobalt Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . .387 Forging of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Corrosion Behavior of Cobalt Alloys . . . . . . . . . . . . . . . . . . . . . . . . .395 Powder Metallurgy Processing of Nickel Alloys. . . . . . . . . . . . . . . . .203 Fabrication and Metallography of Cobalt Alloys. . . . . . . . . . . . . . . . .401 Heat Treating of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 Machining of Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Welding and Brazing of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . .245 Alloy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422 © 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G)  ASM Specialty Handbook Nickel, Cobalt, and Their Alloys Edited by J. R. Davis Davis & Associates Prepared under the direction of the ASM International Handbook Committee ASM International Staff Scott D. Henry,Assistant Director of Reference Publications Bonnie R. Sanders,Manager of Production Nancy Hrivnak,Copy Editor Kathleen S. Dragolich,Production Supervisor Jill A. Kinson and Candace K. Mullet,Production Coordinators William W. Scott, Jr.,Director of Technical Publications ASM International Materials Park, OH 44073 www.asminternational.org © 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Copyright2000 by ASM International® All rights reserved Nopartofthisbookmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyany means,electronic,mechanical,photocopying,recording,orotherwise,withoutthewrittenpermissionofthecopy- right owner. Firstprinting,December2000 Greatcareistakeninthecompilationandproductionofthisbook,butitshouldbemadeclearthatNOWAR- RANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MER- CHANTABILITYORFITNESSFORAPARTICULARPURPOSE,AREGIVENINCONNECTIONWITH THISPUBLICATION.AlthoughthisinformationisbelievedtobeaccuratebyASM,ASMcannotguaranteethat favorableresultswillbeobtainedfromtheuseofthispublicationalone.Thispublicationisintendedforusebyper- sonshavingtechnicalskill,attheirsolediscretionandrisk.Sincetheconditionsofproductormaterialuseareout- sideofASM’scontrol,ASMassumesnoliabilityorobligationinconnectionwithanyuseofthisinformation.No claimofanykind,whetherastoproductsorinformationinthispublication,andwhetherornotbasedonnegli- gence,shallbegreaterinamountthanthepurchasepriceofthisproductorpublicationinrespectofwhichdamages areclaimed.THEREMEDYHEREBYPROVIDEDSHALLBETHEEXCLUSIVEANDSOLEREMEDYOF BUYER,ANDINNOEVENTSHALLEITHERPARTYBELIABLEFORSPECIAL,INDIRECTORCONSE- QUENTIALDAMAGESWHETHERORNOTCAUSEDBYORRESULTINGFROMTHENEGLIGENCE OFSUCHPARTY.Aswithanymaterial,evaluationofthematerialunderend-useconditionspriortospecifica- tion is essential. Therefore, specific testing under actual conditions is recommended. Nothingcontainedinthisbookshallbeconstruedasagrantofanyrightofmanufacture,sale,use,orreproduc- tion,inconnectionwithanymethod,process,apparatus,product,composition,orsystem,whetherornotcovered byletterspatent,copyright,ortrademark,andnothingcontainedinthisbookshallbeconstruedasadefense againstanyallegedinfringementofletterspatent,copyright,ortrademark,orasadefenseagainstliabilityforsuch infringement. Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International. Library of Congress Cataloging-in-Publication Data ASM specialty handbook: nickel, cobalt, and their alloys / edited by J. R. Davis; prepared under the direction of the ASM International Handbook Committee. p. cm. Includes bibliographical references and index. 1. Nickel—Handbooks, manuals, etc. 2. Nickel alloys—Handbooks, manuals, etc. 3. Cobalt—Handbooks, man- uals, etc. 4. Cobalt alloys—Handbooks, manuals, etc. I. Davis, J.R. (Joseph R.) II. ASM International. Handbook Com- mittee. TA480.N6A282000 620.1’88—dc21 00-059348 ISBN:0-87170-685-7 SAN:204-7586 ASM International® Materials Park, OH 44073-0002 www.asminternational.org Printed in the United States of America © 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .v Nickel-ChromiumAlloystoResistFuelOilAshCorrosion. . .62 Nickel-Iron-Chromium Alloys . . . . . . . . . . . . . . . . . . . . . . . .63 Introduction to Nickel and Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . .1 Nickel-Chromium-Iron Alloys . . . . . . . . . . . . . . . . . . . . . . . .66 The Nickel Industry: Occurrence, Recovery, and Consumption. . . . . . .3 Superalloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Elemental Nickel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 General Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Occurrence and Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Extraction and Refining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Properties and Microstructure. . . . . . . . . . . . . . . . . . . . . . . . .79 End Uses of Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Environmental Effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Uses of Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Special-Purpose Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Nickel in Ferrous Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Commercially Pure Nickel for Electronic Applications. . . . .92 Nickel and Nickel-Base Alloys. . . . . . . . . . . . . . . . . . . . . . . . .9 Resistance Heating Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Nickel Coatings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Thermocouple Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Nickel in Nonferrous Alloys. . . . . . . . . . . . . . . . . . . . . . . . . .10 Nickel-Iron Soft Magnetic Alloys. . . . . . . . . . . . . . . . . . . . . .94 Nickel Powders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Low-Expansion Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Wrought Corrosion Resistant Nickel and Nickel Alloys. . . . . . . . . . . .14 Nickel-Titanium Shape Memory Alloys. . . . . . . . . . . . . . . .101 Physical Metallurgy of Nickel and Nickel Alloys. . . . . . . . . .14 Nickel-Beryllium Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Commercial Nickel and Nickel Alloys. . . . . . . . . . . . . . . . . .15 Ordered Intermetallic Alloys of Ni Al . . . . . . . . . . . . . . . . .104 3 Properties of Wrought Nickel and Nickel Alloys . . . . . . . . . . . . .19 Nickel Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Nickel 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Nickel Plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 Nickel 201. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Electroforming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Nickel 270. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Electroless Nickel Plating. . . . . . . . . . . . . . . . . . . . . . . . . . .115 Duranickel 301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Thermal Spray Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 Monel 400. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Weld-Overlay Coatings. . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 Monel R-405. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Solid-State Nickel Cladding . . . . . . . . . . . . . . . . . . . . . . . . .122 Monel K-500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Inconel 600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Corrosion Behavior of Nickel and Nickel Alloys. . . . . . . . . . . . . . .125 Inconel 622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Corrosion Behavior of Nickel Alloys in Specific Environments. . . . .127 Inconel 625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Alloy Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Inconel 686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Effects of Major Alloying Elements. . . . . . . . . . . . . . . . . . .129 Inconel 690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Corrosion in Specific Environments. . . . . . . . . . . . . . . . . . .130 Inconel 718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Corrosion of Nickel and High-Nickel Alloy Weldments . . .137 Inconel 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Stress-Corrosion Cracking and Hydrogen Embrittlement Incoloy 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 Incoloy 801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Physical Metallurgy of Nickel-Base Alloys . . . . . . . . . . . . .141 Incoloy 825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 SCC in Halide Environments . . . . . . . . . . . . . . . . . . . . . . . .143 Hastelloy B-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 SCC in Environments Containing Sulfur Species. . . . . . . . .147 Hastelloy B-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 SCC in High-Temperature Water and Dilute Hastelloy C-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Aqueous Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152 Hastelloy C-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 SCC in Caustic Environments. . . . . . . . . . . . . . . . . . . . . . . .154 Hastelloy C-276. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Hastelloy C-2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Cracking in Other Environments. . . . . . . . . . . . . . . . . . . . . .157 Hastelloy G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Hydrogen Embrittlement. . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Hastelloy G-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 SCC Testing Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Hastelloy G-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 High-Temperature Corrosion Behavior of Nickel Alloys. . . . . . . . . .167 Hastelloy G-50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 Hastelloy N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Carburization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 Hastelloy S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Nitridation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 Hastelloy W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Sulfidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 Hastelloy X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Halogenation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 Cast Corrosion-Resistant Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . .55 Hot Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 Standard Grades. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Ash/Salt Deposit Corrosion. . . . . . . . . . . . . . . . . . . . . . . . . .183 Nickel-Base Proprietary Alloys. . . . . . . . . . . . . . . . . . . . . . . .57 Corrosion in Waste Incineration Environments . . . . . . . . . .183 Cast Heat Resistant Nickel-Chromium, Nickel-Iron-Chromium, and Molten Salt Corrosion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 Nickel-Chromium-Iron Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Molten Metal Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . .186 iii © 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Fabrication and Finishing of Nickel and Nickel Alloys . . . . . . . . .189 Metallography and Microstructures of Nickel and Nickel-Copper Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . .293 Forming of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 Metallography and Microstructures of Nickel-Iron Alloys. .294 Factors Influencing Formability . . . . . . . . . . . . . . . . . . . . . .191 Metallography and Microstructures of Heat Resistant Alloys. . . . . . .298 Special Considerations for Heat-Resistant Alloys . . . . . . . .191 Specimen Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298 Lubricants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 Microexamination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300 Tools and Equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 Microstructures of Wrought Heat Resistant Alloys . . . . . . .301 Shearing, Blanking, and Piercing . . . . . . . . . . . . . . . . . . . . .193 Phases in Wrought Heat Resistant Alloys. . . . . . . . . . . . . . .302 Deep Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 Phase Diagrams of Binary and Ternary Nickel Systems. . . . . . . . . . .331 Spinning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 Bending Tube and Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 Introduction to Cobalt and Cobalt Alloys. . . . . . . . . . . . . . . . . . . .343 Bending of Plate, Sheet, and Strip. . . . . . . . . . . . . . . . . . . . .196 The Cobalt Industry: Occurrence, Recovery, and Consumption. . . . .345 Expanding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 Elemental Cobalt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 Forming of Rod and Bar. . . . . . . . . . . . . . . . . . . . . . . . . . . .196 Occurrence and Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 Cold Heading and Cold Extrusion. . . . . . . . . . . . . . . . . . . . .197 Extraction and Refining. . . . . . . . . . . . . . . . . . . . . . . . . . . . .345 Straightening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197 End Uses of Cobalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347 Cold-Formed Parts for High-Temperature Service. . . . . . . .197 Uses of Cobalt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349 Forging of Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 Metallurgical Uses of Cobalt. . . . . . . . . . . . . . . . . . . . . . . . .349 Die Materials and Lubrication. . . . . . . . . . . . . . . . . . . . . . . .198 Nonmetallurgical Uses of Cobalt . . . . . . . . . . . . . . . . . . . . .354 Heating for Forging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 Phase Diagrams of Binary and Ternary Cobalt Systems. . . . . . . . . . .356 Cooling after Forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 Cobalt-Base Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362 Forging Practice for Specific Alloys. . . . . . . . . . . . . . . . . . .199 Cobalt-Base Wear Resistant Alloys . . . . . . . . . . . . . . . . . . .363 Thermal-Mechanical Processing (TMP). . . . . . . . . . . . . . . .201 Cobalt-Base Heat Resistant Alloys. . . . . . . . . . . . . . . . . . . .365 Isothermal Forging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202 Cobalt-Base Corrosion Resistant Alloys. . . . . . . . . . . . . . . .367 Powder Metallurgy Processing of Nickel Alloys . . . . . . . . . . . . . . . .203 Alloy Compositions and Product Forms. . . . . . . . . . . . . . . .368 Production of Nickel Powders. . . . . . . . . . . . . . . . . . . . . . . .203 Properties and Fabrication Characteristics of Cobalt and Sintering of Nickel and Nickel Alloys . . . . . . . . . . . . . . . . .211 Cobalt Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371 Roll Compacting of Nickel and Nickel Alloys. . . . . . . . . . .214 Conventional P/M Superalloy Processing. . . . . . . . . . . . . . .215 Properties of Cobalt Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 Specialized P/M Superalloy Processing . . . . . . . . . . . . . . . .220 AiResist 13 (AR-13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 Heat Treating of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 AiResist 213 (AR-213). . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 Types of Heat Treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . .230 AiResist 215 (AR-215). . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 Annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 Duratherm 600. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374 Process Control Factors in Annealing. . . . . . . . . . . . . . . . . .232 Elgiloy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374 Stress Relieving. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 FSX-414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Stress Equalizing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 Haynes 25 (L-605). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376 Age Hardening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 Haynes 188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377 Thermomechanical Processing . . . . . . . . . . . . . . . . . . . . . . .234 MAR-M 302 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379 Machining of Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235 MAR-M 322 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379 Machinability Categories. . . . . . . . . . . . . . . . . . . . . . . . . . . .235 MAR-M 509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379 Basic Principles Applicable to All Machining Operations. .236 MP35N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380 Recommendations for Machining. . . . . . . . . . . . . . . . . . . . .237 MP159. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Welding and Brazing of Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . .245 Stellite 6B (Haynes 6B). . . . . . . . . . . . . . . . . . . . . . . . . . . . .382 Welding Metallurgy of Corrosion Resistant Alloys . . . . . . .245 Stellite 6K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 Welding Metallurgy of Corrosion Resistant Alloys Ultimet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 Containing Molybdenum. . . . . . . . . . . . . . . . . . . . . . . . . .251 UMCo-50 (Haynes 150) . . . . . . . . . . . . . . . . . . . . . . . . . . . .385 Welding Metallurgy of Heat Resistant Alloys . . . . . . . . . . .255 X-40/X-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386 Consumable Selection, Procedure Development, Wear Behavior of Cobalt Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . .387 and Practice Considerations . . . . . . . . . . . . . . . . . . . . . . .257 Types of Wear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387 Brazing of Heat Resistant Nickel-Base Alloys. . . . . . . . . . .267 Wrought Alloy Wear Data. . . . . . . . . . . . . . . . . . . . . . . . . . .388 Cleaning and Finishing of Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . .273 Hot Hardness Values for Wrought Alloys. . . . . . . . . . . . . . .392 Cleaning and Finishing of Corrosion Resistant Wear-Related Applications for Wrought Alloys. . . . . . . . . .393 Nickel Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 Wear Behavior of Cobalt-Base Hardfacing Alloys. . . . . . . .393 Cleaning and Finishing of Heat Resistant Nickel Alloys . . .278 Corrosion Behavior of Cobalt Alloys . . . . . . . . . . . . . . . . . . . . . . . . .395 High-Temperature Coatings for Superalloys . . . . . . . . . . . . . . . . . . .281 The Effect of Alloying Elements. . . . . . . . . . . . . . . . . . . . . .395 Coating Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 Behavior of Cobalt Alloys in Corrosive Types of Coatings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281 Aqueous Environments. . . . . . . . . . . . . . . . . . . . . . . . . . .395 Methods of Applying Diffusion Coatings. . . . . . . . . . . . . . .283 Environmental Embrittlement of Cobalt Alloys. . . . . . . . . .398 Properties of Diffusion Coatings. . . . . . . . . . . . . . . . . . . . . .284 High-Temperature Corrosion of Cobalt Alloys. . . . . . . . . . .399 Practical Applications of Diffusion Coatings. . . . . . . . . . . .286 Fabrication and Metallography of Cobalt Alloys. . . . . . . . . . . . . . . . .401 Methods of Applying Overlay Coatings. . . . . . . . . . . . . . . .287 Heat Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401 Thermal Barrier Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . .287 Workability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401 Coating Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288 Joinability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402 Machinability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403 Metallography, Microstructures, and Phase Diagrams of Metallography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404 Nickel and Nickel Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291 Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407 MetallographyandMicrostructuresofNickel,Nickel-Copper, andNickel-IronAlloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 Alloy Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422 iv © 2000 ASM International. All Rights Reserved. www.asminternational.org ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys (#06178G) Preface The history and development of nickel and cobalt, as well as their arsenical fumes when roasted. The word means a goblin or “ill-natured alloys,paralleloneanotherinanumberofways.Nickelwasfirstusedby fairy.”ThemoderncobaltindustrydatesbacktotheopeningoftheNew ancient man in swords and implements fashioned from iron-nickel Caledonia mines in 1875 and the discovery of cobalt-bearing ores in meteorites. The first authenticated artifact from such a source is what is Africa in the early 20th century. The first cobalt-base alloy was a believedtobeaportionofadaggerfoundattheSumeriancityofUr(circa cobalt-chromium alloy containing nominally 25% chromium called 3100 B.C.); analysis has shown it to contain 10.9% nickel. The earliest “Stellite,”whichwasdevelopedbyElwoodHaynesandpatentedin1907. recordeduseofnickelinmoderntimes(i.e.,thelastfewhundredyears) HaynestookthenameStellitefromtheLatinwordforstar,stella,because was in coins made from “pai-thung,” a white copper-nickel alloy first ofthealloy’spermanentstarlikeluster.Todaycobaltisusedasacritical developedinChina.NickelwasfirstidentifiedasanelementbyAlexF. alloying element in superalloys, cemented carbides, and high-speed tool Cronstedt in 1751 and named nickel from the ore “kupfernickel,” steels,asthebaseelementforwear,heat,andcorrosionresistantalloys,in so-calledbysuperstitiousminerswhobelievedthattheorewasbedeviled. magneticalloysandcontrolled-expansionalloys,andinvariouselectronic The modern nickel industry dates back from the opening of the New components and chemicals. Caledoniaminesin1875andthoseofSudbury,Ontario,Canada,in1886. Inrecognitionoftheimportanceoftheseversatileandstrategicmetals, Thefirstnickel-basealloydevelopedwas“MonellMetal”(nowknownas ASMdecidedthatthisHandbook,theeighthtobepublishedintheASM Monelalloy400),anickel-copperalloycontainingnominally67%nickel Specialty Handbook series, would cover the metallurgy, properties, withthebalancecopper.Thealloy’soriginwasderivedfromtheoresof the Sudbury basin in Ontario that contain nickel and copper in fabricationcharacteristics,andapplicationsassociatedwithnickel,cobalt, approximately the same two-to-one ratio. The trademark for Monel was and their alloys. It is intended to provide the most comprehensive and firstregisteredin1906.Todaynickeliswidelyusedasakeyconstituentin up-to-date information available on these metals that is suitable for stainless steels, low-alloy steels, and cast irons, as the base element for engineers, designers, teachers, and students. many corrosion and heat resistant alloys, as wear or corrosion resistant MuchoftheinformationanddataincludedinthisHandbookhasbeen coatings, and in special-purpose materials such as magnetic alloys and suppliedbyHaynesInternational,SpecialMetalsCorporation,Carpenter controlled-expansion alloys. Technology Corporation, Deloro Stellite Inc., Wall Colmonoy Although isolation of metallic cobalt was first effected by Swedish Corporation, Timken Latrobe Steel, SPS Technologies Aerospace chemist G. Brandt in 1735, compounds derived from mineral ores Fasteners Group, Elgiloy Specialty Metals, the Cobalt Development containing cobalt had been used for more than 2000 years as coloring Institute, and the Nickel Development Institute. Gratitude is extended to agents(blueandgreen)forglassandceramicsinPersiaandEgypt.Cobalt these organizations and to the ASM Editorial and Library staffs, since was a major coloring agent used by Greek glassworkers about the without these resources it would not have been possible to compile this beginningoftheChristianera.ChinesepotteryproducedduringtheTang Handbook. and Ming dynasties (A.D. 600 to 900 and A.D. 1350 to 1650) used cobalt widely,andVenetianglassproducedintheearly15thcenturyalsoshows the use of cobalt. The term “kobold” was used applied by miners in Joseph R. Davis Germany in the 16th century to an ore that did not yield the expected Davis & Associates copper when reduced by the normal procedure and emitted dangerous Chagrin Falls, Ohio v ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys Copyright © 2000 ASM International® J.R. Davis, editor, p 3-6 All rights reserved. DOI:10.1361/ncta2000p003 www.asminternational.org The Nickel Industry: Occurrence, Recovery, and Consumption • NICKELisoneofthemostversatileandim- ingtemperature,fallsapproximatelylinearlyto Hysteresisloss:685J/m3atB=0.6T portantofthemajorindustrialmetals.Itisavi- 7.0g/cm3at2500K(∼2227°C,or4040°F). • Curietemperature:358°C(676°F) tal alloying element in cast irons, steels (most Thermal Properties. The melting and boil- notablyausteniticstainlesssteelscontaining8to ingpointsofnickelare1453°C(2647°F)and TheCurietemperature,inthesamemanneras 35%Ni),andnonferrousalloys.Nickel-baseal- approximately 2730 °C (4946 °C), respec- otherstructure-sensitiveproperties,isdepend- loys are used in demanding corrosion-resistant tively. Other important thermal properties in- entonpurityandonthepriorhistoryofthesam- and heat-resistant applications. Nickel-iron al- cludethefollowing: plebutingeneralliesbetween350and360°C loys have been developed for applications re- (660 and 680 °F) for high-purity nickel (the quiringcontrolledthermalexpansionorsoftmag- • Coefficient of linear thermal expansion: 358 °C, or 676 °F, previously given value is neticcharacteristics.Nickelcoatingsandnickel 13.3μm/m·Kat0to100°C(32to212°F) fromVolume2oftheASMHandbook). • articles made by electroforming are also tech- Specific heat: 0.471 kJ/kg · K at 100 °C nologicallyimportant.Nickeland/ornickelcom- (212°F) • MechanicalProperties poundsarealsousedincoinage,batteries,cata- Recrystallization temperature: 370 °C lysts,ceramics,andmagneticsuperconductors. (698°F) • Thermalconductivity:82.9W/m·Kat100 Tensile Properties. Tensile properties for annealedhigh-puritynickelhavebeenreported °C(212°F) asfollows: Elemental Nickel Electrical Properties. The electrical resis- • Tensilestrength:317MPa(46ksi) tivity of pure nickel is negligible at extremely • 0.2%offsetyieldstrength:59MPa(8.6ksi) Although nickel can be produced commer- lowtemperaturesbutincreaseswithincreasing • Elongationin50mm(2in.):30% ciallytoapurityof99.99%,mostofthedatare- temperatureandincreasingamountsofimpuri- portedintheliteratureconcernnickel(plusco- ties.Theresistivityofnickelat20°C(68°F)is Suitable choice of hot rolling, annealing, and balt)of99.95%purity.Thisdegreeofpurityis 68.44nΩ·m,andtheelectricalconductivityis cold drawing or cold rolling can yield tensile satisfactory for the determination of many 25.2%IACS. strengthsrangingfrom448to793MPa(65to properties, but certain properties, for example, Magnetic Properties. Nickel is one of the 115ksi)inrodsandbars,ashighas896MPa electricalresistivity,areverysensitivetoimpu- three elements (iron and cobalt being the oth- (130 ksi) in strip, and 1103 MPa (160 ksi) in ritiesinsolidsolution. ers) that are strongly ferromagnetic at ambient wire. Mostofthedatagivenbelowaretakenfrom temperature. Typical normal induction curves Hardness.Valuesaslowas64HV(35HRB) Volume 2 of the ASM Handbook (see page of annealed samples of the elements iron, have been reported for annealed high-purity 1143). More detailed information about the nickel, and cobalt are shown in Fig. 1. Pure nickel. Cold work and the presence of impuri- physical, mechanical, and chemical properties nickelisseldomuseditselfasamagneticmate- tiesincreasethehardness. ofpurenickelcanbefoundinRef1and2. rialexceptforcertainspecialpurposes,suchas magnetostriction applications. Many types of nickel-containing alloys, however, exploit the 20 PhysicalProperties ferromagnetic properties of nickel. Examples Fe includematerialsrangingfromhigh-permeabil- General. Nickel (symbol Ni) is number 28 ity,softmagneticalloystohigh-coercivity,per- 15 intheperiodictableoftheelements.Thethree manent magnet alloys. Although these alloys metals—iron, nickel, and cobalt—constitute aregenerallyiron-base,theyfrequentlycontain G tpheeriotrdaincsittaibolne.gTrohuepaitnomthiecfwoeuirgthhtsoefriensiciknelthies 1sc0ribtoed20in%thNeiarotricmleo“rSe.peScuiaclh-PaulrlpooysseaNreicdkee-l n (B), k 10 Co 58.6934, representing a composite of five sta- Alloys” in this Handbook. Examples of mag- ctio Ni bleisotopes. neticpropertiesofnickelaregivenbelow: u d Crystal Structure. The normal structure of In 5 nickel throughout the entire range of tempera- • Magneticpermeability:μ =1240atB= max tures up to the melting point is face-centered 1900G • cubic(fcc).Thelatticeconstantofthefccform Coercive force: 167 A·m–1 from H = 4 0 is0.35167nmat20°C(68°F). kA·m–1 0 50 100 150 200 Density.Thedensityofnickelat25°C(77°F) • Saturationmagnetization:0.616Tat20°C Magnetic field strength (H), Oe is 8.902 g/cm3. The density of liquid nickel at • (68°F) Fig.1 Typical normal induction curves of annealed itsmeltingpointis7.9g/cm3and,withincreas- Residualinduction:0.300T samplesofiron,nickel,andcobalt.Source:Ref1 4/Introduction to Nickel and Nickel Alloys ElasticProperties.AveragevaluesofYoung’s Twogeneraltypesofoxideorecanbedistin- fraction is separated into copper sulfide and modulus of elasticity are 207 GPa (30 × 106 guished: silicate-type ore, in which nickel is nickelsulfideconcentratesbyfrothflotation. psi)for99.95%Ni.Themodulusofshearis76 contained in the lattice of hydrated magne- The nickel sulfide is converted to granular GPa(11×106psi).Poisson’sratio,thatis,the sium-iron-silicates, of which garnierite nickeloxidesinterinfluidized-bedreactors.A ratiooftransversecontractiontolongitudinalex- (Ni,Mg) Si O (OH) is the most common; portionofthisproductismarketeddirectlyfor 6 4 10 8 tensionundertensilestress,is0.31fornickel. and limonitic-type ore, predominantly the hy- alloysteelproduction.Anotherpartofthegran- drated mineral goethite, (Ni,Fe) ,O ·H O, in ular oxide is treated by chlorination at high 2 3 2 which nickel is dispersed. The chemical com- temperature(1200°C,or2200°F)tolowerits ChemicalProperties positionofoxideoresvarieswidelyand,inad- copper content to approximately 0.5%, and ditionto1to3%Ni,maycomprisesignificant then reduced by hydrogen at about 500 °C amountsofcobaltandchromium.Silicate-type (930 °F) to yield a highly metallized product Nickel is not an active element chemically ore in New Caledonia analyzes about 2 to 3% (95%Ni)formarket. anddoesnotreadilyevolvehydrogenfromacid Ni,0.1%Co,2%Cr O ,and10to25%MgO. Two processes are employed to convert the 2 3 solutions;thepresenceofanoxidizingagentis Cubanore,primarilyofthelimonitictype,ana- remainingoxidetopuremetalformarket.One usuallyrequiredforsignificantcorrosiontooc- lyzesintherangeofabout1.2to1.4%Ni,0.1 involves reduction smelting to metal anodes cur. Generally, reducing conditions retard cor- to0.2%Co,3%Cr O ,and35to50%Fe. andisfollowedbyelectrolyticrefining,usinga 2 3 rosion,whereasoxidizingconditionsaccelerate sulfate-chloride electrolyte with divided cells corrosionofnickelinchemicalsolutions.How- and continuous electrolyte purification. The ever, nickel may also form a protective corro- product of this operation is electrolytic nickel sion-resistant, or passive, oxide film on expo- Extraction and Refining (Ref 3) cathodes, and the by-products are cobalt and sure to some oxidizing conditions. Additional preciousmetals. information is available in the article “Corro- Theotherprocessistheatmospheric-pressure sionBehaviorofNickelAlloysinSpecificEn- Recovery from Sulfide Ores. Figure 2 il- carbonyl process, which is used in Clydach, vironments”inthisHandbook. lustratesthemajorprocessesfortheextraction Wales,UnitedKingdom,andinCopperCliff,a andrecoveryofnickelfromsulfideores.These subdivision of Sudbury, Ontario, Canada. The oresarefirstcrushedandgroundtoliberatethe nickel oxide sinter is reduced with hydrogen mineralvaluesandthensubjectedtofrothflota- and treated with carbon monoxide at approxi- Occurrence and Supply tion to concentrate the valuable constituents mately50°C(120°F)tovolatilizenickelasgas- and reject the gangue or rock fraction. De- eousnickelcarbonyl.Thiscompoundisdecom- A large number of nickel-bearing minerals pending on the copper and pyrrhotite (iron) posedatapproximately200°C(390°F)toyield have been identified, but relatively few are contentsoftheore,itissometimesappropriate high-purity nickel in pellet form. Copper and abundant enough to be industrially significant. toproduceaseparatecopperconcentrateanda cobalt salts and precious metals are recovered Nickel materials that are or have been impor- separatepyrrhotiteconcentrate. from the residue. Nickel powder is also pro- tant are classified as sulfides, laterites (which Selective flotation and magnetic separation ducedatthisplantinapressurecarbonylsystem. includeoxidesandsilicates),andarsenides.Of may be employed to divide the bulk concen- Thenickel-copperalloyfromthemattesepa- these, the most important present-day ores are trateintonickel,copper,andiron-richfractions ration step, containing significant platinum- sulfidesandlaterites. forseparatetreatment(seeprocessAinFig.2). groupmetalvalues,ismeltedinatop-blownro- Sulfide Ores. Inthesulfideores,nickeloc- Ahigh-gradeironore,nickeloxide,andsulfu- taryconverter,anditssulfurcontentisadjusted curs chiefly as the mineral pentlandite, ric acid are recovered from the iron concen- by blowing with oxygen at temperatures up to (Ni,Fe) S , in association with large amounts trate. The nickel concentrate is treated by 1600°C(2900°F).Themetalproductisgranu- ofpyrrh9ot8ite,Fe S ,andusuallywithasignifi- pyrometallurgicalprocesses.Themajorportion lated with water, and the dried metal granules cant amount of c7ha8lcopyrite, CuFeS . In addi- undergoes partial roasting in multihearth or are treated in high-pressure (6.7 MPa, or 970 2 tiontonickel,iron,andcopper,theseorescon- fluidized-bed furnaces to eliminate about half psi) reactors with carbon monoxide at 150 °C tain varying amounts of cobalt and precious ofthesulfurandtooxidizetheassociatediron. (300°F)toformnickelcarbonylandsomeiron metals: the platinum group metals, gold, and Thehotcalcine,plusflux,issmeltedinnatural carbonyl. The mixed carbonyls are separated silver. Their chemical composition falls in the gasorcoal-firedreverberatoryfurnacesoperat- byfractionation,andthepurenickelcarbonylis generalrangeof0.4to3%Ni,0.2to3%Cu,10 ing at about 1200 °C (2200 °F) to produce a decomposedatapproximately200°C(390°F) to35%Fe,and5to25%S,withthebalancebe- furnace matte that is enriched in nickel and a to yield high-purity nickel pellets and nickel ingsubstantiallySiO ,Al O ,MgO,andCaO. slag for discard. The furnace matte is trans- powderformarket. 2 2 3 Sulfide ores are generally found in areas ferred to Pierce-Smith converters and blown Thereisasimplerprocedurethatcanbeused where glacial action has removed much of the with air in the presence of more flux to oxi- toprocessnickelsulfideoreswithlowercopper overburden of weathered rock. Important dize the remaining iron and associated sulfur, contents.AsshownbyprocessBinFig.2,se- known deposits are in Sudbury, Ontario, Can- yielding Bessemer matte containing nickel, lective flotation is employed to produce a ada;intheVoisey’sBaydepositinnortheastern copper,cobalt,smallamountsofpreciousmet- nickel concentrate low in copper and a small Labrador, Canada; in the Thompson-Moak als, and approximately 22% sulfur. The slag amount of copper concentrate for treatment Lake area of northern Manitoba, Canada; in thatisgeneratedintheconvertingoperationis elsewhere.Thedewaterednickelconcentrateis RussiaatNorilskinSiberia;intheKolaPenin- returned to the smelting furnace to recover its fluid-bed-roastedforpartialeliminationofsul- sula bordering Finland; in western Australia; metalvalues. fur, and the calcine plus flux is smelted in andinSouthAfrica. The molten Bessemer matte is cast into 25 arc-typeelectricfurnaces.Wastefurnaceslagis Laterites. The oxide resources of nickel ton molds in which it undergoes controlled granulatedfordisposalwhilethemoltenmatte (commonly known as laterite ores) are gener- slowcoolingtopromoteformationofrelatively is transferred to Pierce-Smith converters for ally found in tropical regions, with the largest large,discretecrystalsofcoppersulfide,nickel furtherupgradingtoBessemermatte.Thecon- deposits being in Cuba, New Caledonia, Indo- sulfide, and a small quantity of a metallic ventionalprocedureoffluxadditionandblow- nesia, the Philippines, and Central and South phase, a nickel-copper alloy that collects most ingwithairremovesallbuttracesofironfrom America. These ores formed through weather- of the precious metals. After crushing and thematte,andtheslagproducedisreturnedto ing processes that resulted in nickel being grinding, the metallics are removed magneti- the electric furnace for recovery of metal val- leached from surface rock layers and precipi- cally and treated in a refining complex for re- ues.Theconvertermatte,essentiallynickelsul- tatedatlowerlevels. covery of metal values, and the main sulfide fide (Ni S ), is cast into anodes and electro- 3 2 The Nickel Industry: Occurrence, Recovery, and Consumption/5 Process A Process B Process C Ore Ore Comminution Comminution Comminution Flotation Tailings to Ctoop cpoeprp ceorn scmeMnetalrtgeanrteetic Tora itloin dgusm top mine backfill Tmorai nitloien dgbusam ctokpfill NFicloktealt Cticoooo ncnpocppeepnr etcrrao stnemceenltterarte Flotation Nickelmo crio ntnoec dbeuanmctrkapftiell Nickel sceopnacreanttiorante Pcoynrrcheontittreate Iron ore recovery plant Roasting Filtration Air Sulfur Sulfuric acid Air Sulfur dioxide Drying dioxide Roasting Smelting Flux Sulfur dioxide Smelting Iron Nickel Flux Slag to Air and Flux Slag to dumpore oxide Furnacdeu mmaptte oxygen Flash smelting Slag Sdiuolxfuidre ConveFrltuinxg Slag Sdiuolxfuidre ConveFrtliunxg Slag Fmuartnteace FSlulaxg to waste Air Converter matte Air Air Converter matte Anode casting Converter matte Converting into molds Cooling Comminution Electrolysis Elemental Sulfur sulfur dioxide Comminution Ammonia Oxygen Oxygen Flotation Copper sulfide Cobalt oxide, Nickel cathodes Pressure leaching Granulation Converting to copper smelter precious-metals residue Water and reverts Nickel-cobalt-copper solution Purification Nickel CmoantPtvereerstseurre Cnmiocapkgepnleert-ics Mseapganreattiicon Nickel RsuoAlafirisdteing SGuralfnuur ldairo nxiidckeel Ctoo cpoppepr esru slfmideelter Hsuyldfirdoegen and iron volatilization oxide (75% Ni) Nickel-cobalt solution Pressure reduction carbonyls Carbon Fractionation Chlorination Nickel powder Hydrogen Nickel Carbon carbonyl monoxide Chlorine Impurities Anode casting Cobalt-nickel solution Cobalt-nickel Reduction precipitation Electrolysis Nickel-cobalt sulfide Hydrogen Decomposition Decomposition Hydrogen Water for further treatment sulfide Ammonium sulfate solution Evaporation Iron-nickel Nickel pellets Nickel powder Nickel Precious metals Metalized nickel Ammonium powder cathode residue, cobalt oxide, granules (95% Ni) sulfate and reverts Fig.2 Flowsheetsforthreemethodsofnickelrecoveryfromsulfideores.Seetextforprocessingdetails.Source:Ref3 lyzedtoyieldelementalsulfurattheanodeand Recovery from Laterite Ores. Thebulkof Otherlarge-scaleoperationsarebasedonse- purenickelatthecathode.Therefiningopera- thenickeloriginatingfromlateriticoresismar- lective reduction of the ore followed by tion also produces cobalt oxide and pre- keted as ferronickel. The process employed is ammoniacal leaching at atmospheric pressure cious-metalresidues. basically simple and involves drying and pre- to dissolve the nickel values. The pregnant li- Intheall-hydrometallurgicalSherrittprocess heatingtheore,usuallyunderreductioncondi- quor is treated to remove impurities and then (seeprocessCinFig.2),thenickeloreiscon- tions. The hot charge is then further reduced heatedinsuitablevesselstodriveoffammonia centrated by conventional froth flotation, and and melted in an electric arc furnace, and the and carbon dioxide and to precipitate a basic thedriednickelconcentrateisflash-smeltedwith crudemetalisrefinedandcastintoferronickel nickelcarbonate.Thismaterialmaybesintered oxygen-enriched air and flux to produce fur- pigs. A typical operation is shown in Fig. 3 underreducingconditionstoyieldametallized nace matte and waste slag. The furnace matte (processA). nickel oxide sinter, or the carbonate may be iscooled,crushed,andfinelygroundasfeed A substantial amount of nickel is produced redissolved in ammoniacal solution and then for the hydrometallurgical plant, where it is from lateritic ores by the nickel-sulfide matte treated with hydrogen under pressure to yield leachedunderpressurewithastrongammonia technique.Inthisprocesstheoreismixedwith nickel powder for briquetting. This process is solutionandairtosolubilizethebasemetalval- gypsum or other sulfur-containing material depicted by process C in Fig. 3. Process D in ues, with the simultaneous production of am- such as high-sulfur fuel oil, followed by a re- Fig.3depictsaprocesswhereinlimonitic-type monium sulfate. The pregnant leach liquor is duction and smelting operation to form matte. ores are leached with sulfuric acid at elevated treatedtoremoveimpuritiesandthenreduced Asinthetreatmentofsulfideconcentrates,the temperature and pressure to solubilize nickel withhydrogenatelevatedpressure(3MPa, moltenfurnacematteisupgradedineithercon- and cobalt. The pregnant solution is then or435psi)andtemperature(190°C,or375°F) ventional or top-blown rotary converters to a treated with hydrogen sulfide to precipitate toyieldagranularnickelpowderproduct.The high-gradematte,whichcanbefurtherrefined mixed nickel-cobalt sulfides. This precipitate tailliquorfromthisoperationistreatedfurther byroastingandreductiontoametallizedprod- maybetreatedbytheSherrittpressure,ammo- to recover ammonium sulfate crystals and a uct. An example of this procedure is shown in nia-leach process to yield separate nickel and mixednickel-cobaltsulfide. Fig.3(processB). cobaltpowders. 6/Introduction to Nickel and Nickel Alloys Process A Process B Process C Process D End Uses of Nickel Ore Limonitic and Silicate ores Silicate ores silicate ores Limonitic ores According to the Nickel Development Insti- Mixing tute, worldwide consumption of nickel can be Kiln drying Gypsum Kiln drying Sulfuric brokenintothefollowingmarketsegments: and preheating acid Pulping Briquetting Use Nickelconsumption,% Arsemrdceu flcutitnrinogance Drying Mreudlutichteioanrth Nickel- PleraecshsRiunergesidue SNPtliaacitkninelegl-sbsassteeeallloys 61219...797 Slag to cobalt Alloysteels 9.0 Precipitation discard Coke, solution Foundryproducts 3.5 Blast limestone Leaching Hydrogen Copper-basealloys 1.4 furnace sulfide Other 1.8 Ladle smelting Sdilsacga trod Spuorluifitcioantion Residue RecycledSsluulrfriyde Transportation desulfurization to ammonia Converting Distillation discard Consumption statistics in the United States Acid Sand, lime Basic nickel pressure follow similar trends (Table 1), with stainless Refining Roasting carbonate dissolution steels making up about 55% of all nickel con- Calcining Air sumed. According to the American Iron and Reducing Hydrogen SteelInstitute,nickel-bearinggradesaccounted Casting agent Briquetting Ammonia preredsuscutiroen for 63% of the total stainless steel production Sintering Reduction for1997.Demandforausteniticstainlesssteels Reduction smelting is expected to continue to drive the world nickelmarketforatleastanother20years.De- mandfornickel-bearingsuperalloysisalsoex- pected to grow. In 1997, U.S. consumption of Ferronickel Nickel rondelles Nickel Nickel CobaltAmmonium Nickel primary nickel in superalloys increased almost pigs oxide sinter pig powder sulfate powder 20% because of growing orders in the aero- Fig.3 Flowsheetsforfourmethodsofnickelrecoveryfromlateriteores.Seetextforprocessingdetails.Source:Ref3 spaceindustry(Table1). Theuseofprimarynickelbybatterymanufac- turers is another potential growth market for nickel. Rechargeable nickel-cadmium and nickel-metal hydride batteries are used in handheldpowertools,cellulartelephones,lap- Table1 ConsumptionofnickelintheUnitedStatesbyenduse top computers, and camcorders. Nickel base batteries,includingthemorerecentlydeveloped Form/tonnesofcontainednickel(a)(b)(c) sodiummetal-nickelbatterycalledtheZEBRA Oxideand Other Total Secondary Grandtotal (ZeroEmissionBatterieResearchActivity),are Use Metal Ferronickel oxidesinter Chemicals forms primary (scrap) 1997 1996 alsobeingusedinelectricvehiclesandtherap- Castirons 168 W … 1 45 214 428 642 563 idly growing electric scooter/bicycle market. Chemicalsandchemical W … W 2,730 … 2,730 … 2,730 5,350 Nickelconsumptionpatternscouldchangesig- uses nificantly due to tightening oil supplies com- Electric,magnet, W W … (d) … (d) W W W binedwithincreasedoilandgasolineprices.The expansionalloys Electroplating(sales 15,800 … W 61 1 15,800 … 15,800 16,300 marketforlargeenergy-storagedevicesforna- toplaters) tionwidecommunicationssystemsandforemer- Nickel-copperand 2,650 W W … W 2,650 3,390 6,040 7,280 gencypowersupplieswouldalsogrow,further copper-nickelalloys encouraging the scale-up of both nickel-metal Othernickelandnickel 17,000 W W … W 17,000 2,040 19,100 19,300 alloys hydrideandsodiummetal-nickelbatteries. Steel Stainlessandheat 26,100 21,000 1,760 … 57 48,900 56,900 106,000 94,100 resistant Alloys(excludes 5,180 1,090 1,060 (d) W 7,320 1,330 8,650 6,970 REFERENCES stainless) Superalloys 18,200 … (d) 1 465 18,700 W 18,700 15,600 1.S.J. Rosenberg, Nickel and Its Alloys, Na- Other(e) 6,000 410 79 645 1,070 8,210 4,790 13,000 13,300 tionalBureauofStandardsMonograph106, Totalreported 91,000 22,500 2,890 3,440 1,640 122,000 68,800 190,000 179,000 U.S.DepartmentofCommerce,May1968 Totalallcompanies, NA NA NA NA NA 154,000 38,100 192,000 181,000 2.W. Betteridge, Nickel and Its Alloys, Ellis apparent HorwoodLtd.,1984 (a)Dataareroundedtothreesignificantdigitsandmaynotaddtototalsshown.(b)W,withheldtoavoiddisclosingcompanyproprietarydata;in- 3.A.Illis,NickelMetallurgy,McGraw-HillEn- cludedwith“Other.”.(c)NA,notapplicable.(d)Lessthan12unit.(e)Includesbatteries,catalysts,ceramics,coinage,otheralloyscontainingnickel, cyclopedia of Science and Technology, Vol anddataindicatedbysymbol“W.”Source:U.S.GeologicalSurvey 11(MET-NIC),7thed.,1992,p711–714

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.