ebook img

ARUN DEBRAY - University of Texas at Austin PDF

77 Pages·2016·0.77 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARUN DEBRAY - University of Texas at Austin

M382D NOTES: DIFFERENTIAL TOPOLOGY ARUNDEBRAY MAY16,2016 ThesenotesweretakeninUTAustin’sMath382D(DifferentialTopology)classinSpring2016,taughtbyLorenzoSadun. I live-TEXedthemusingvim,andassuchtheremaybetypos;pleasesendquestions,comments,complaints,andcorrectionsto [email protected]. ThankstoAdrianClough,ParkerHund,MaxReistenberg,andThérèseWuforfindingand correctingafewmistakes. CONTENTS 1. TheInverseandImplicitFunctionTheorems: 1/20/16 2 2. TheContractionMappingTheorem: 1/22/16 4 3. Manifolds: 1/25/16 6 4. AbstractManifolds: 1/27/16 8 5. ExamplesofManifoldsandTangentVectors: 1/29/16 9 6. SmoothMapsBetweenManifolds: 2/1/16 11 7. ImmersionsandSubmersions: 2/3/16 13 8. Transversality: 2/5/16 15 9. PropertiesStableUnderHomotopy: 2/8/16 17 10. MaytheMorseBeWithYou: 2/10/16 19 11. PartitionsofUnityandtheWhitneyEmbeddingTheorem: 2/12/16 21 12. Manifolds-With-Boundary: 2/15/16 22 13. RetractsandOtherConsequencesofBoundaries: 2/17/16 24 14. TheThomTransversalityTheorem: 2/19/16 26 15. TheNormalBundleandTubularNeighborhoods: 2/22/16 27 16. TheExtensionTheorem: 2/24/16 28 17. IntersectionTheory: 2/26/16 30 18. TheJordanCurveTheoremandtheBorsuk-UlamTheorem: 2/29/16 32 19. GettingOriented: 3/2/16 33 20. OrientationsonManifolds: 3/4/16 35 21. OrientationsandPreimages: 3/7/16 36 22. TheOrientedIntersectionNumber: 3/9/16 37 23. ExamDebriefing: 3/21/16 39 24. (Minus)SignsoftheTimes: 3/23/16 41 25. TheLefschetzNumber: 3/25/16 43 26. MultipleRootsandtheLefschetzNumber: 3/28/16 45 27. VectorFieldsandtheEulerCharacteristic: 3/30/16 46 28. : 4/1/16 49 29. TheHopfDegreeTheorem: 4/4/16 49 30. TheExteriorDerivative: 4/6/16 50 31. PullbackofDifferentialForms: 4/8/16 53 32. DifferentialFormsonManifolds: 4/11/16 55 33. Stokes’Theorem: 4/13/16 57 34. Tensors: 4/15/16 59 35. ExteriorAlgebra: 4/18/16 61 1 2 M382D(DifferentialTopology)LectureNotes 36. TheIntrinsicDefinitionofPullback: 4/20/16 63 37. deRhamCohomology: 4/22/16 64 38. HomotopyInvarianceofCohomology: 4/25/16 65 39. ChainComplexesandtheSnakeLemma: 4/27/16 68 40. TheSnakeLemma: 4/29/16 70 41. GoodCoversandCompactlySupportedCohomology: 5/2/16 72 42. TheDegreeinCohomology: 5/4/16 75 Lecture1. The Inverse and Implicit Function Theorems: 1/20/16 “Themostimportantlessonofthestartofthisclassistheproperpronunciationofmyname[Sadun]: itrhymeswith‘balloon.’ ” We’rebasicallygoingtomarchthroughthetextbook(GuilleminandPollack),withalittlemoreinthebeginning andalittlemoreintheend;however,we’regoingtobeabitmoreabstract,talkingaboutmanifoldsmoreabstractly, ratherthanjustembeddingthemin(cid:82)n,thoughthetheoremsaremostlythesame. Atthebeginning,we’lldiscuss theanalyticunderpinningstodifferentialtopologyinmoredetail,andattheend,we’llhopefullyhavetimeto discussdeRhamcohomology. Suppose f :(cid:82)n→(cid:82)m. Itsderivativeisdf;whatexactlyisthis? Thereareseveralpossibleanswers. • It’sthebestlinearapproximationto f atagivenpoint. • It’sthematrixofpartialderivatives. Whatweneedtodoismakegood,rigoroussenseofthis,moresothaninmultivariablecalculus,andrelatethetwo notions. Definition1.1. Afunction f :(cid:82)n→(cid:82)misdifferentiableatana∈(cid:82)nifthereexistsalinearmap L:(cid:82)n→(cid:82)msuch that |f(a+h)−f(a)−L(h)| lim =0. (1.2) h→0 |h| Inthiscase, L iscalledthedifferentialof f ata,writtendf| . a Sinceh∈(cid:82)n,butthevectorinthenumeratorisin(cid:82)m,soit’squiteimportanttohavethemagnitudesthere,or elseitwouldmakenosense. Anotherwaytorewritethisisthat f(a+h)= f(a)+L(h)+o(small),i.e.alongwithsomesmallerror(whatever thatmeans). Thismakessenseofthefirstnotion: L isalinearapproximationto f neara. Now,let’smakesense ofthesecondnotion. Theorem1.3. If f isdifferentiableata,thendf isgivenbythematrix(cid:128)∂fi(cid:138). ∂xj Proof. Theidea: if f isdifferentiableata,then(1.2)holdsforh→0alonganypath! Solet’stakee beaunitvectorandh=te as t→0in(cid:82). Then,(1.2)reducesto j j L(te )= f(a1,a2,...,aj+t,aj+1,...,an)−f(a), j t andas t→0,thisshows L(e )i = ∂fi. (cid:130) j ∂xj Inparticular,if f isdifferentiable,thenallpartialderivativesexist. Theconverseisfalse: thereexistfunctions whosepartialderivativesexistatapointa,butarenotdifferentiable. Infact,onecanconstructafunctionwhose directionalderivativesallexist,butisnotdifferentiable! Therewillbeanexampleonthefirsthomework. The ideaisthatdirectionalderivativesrecordlinearpaths,butdifferentiabilityrequiresallpaths,andsomakingthings failalong,say,aquadratic,willproducethesestrangecounterexamples. Nonetheless,ifallpartialderivativesexist,thenwe’realmostthere. 1 TheInverseandImplicitFunctionTheorems: 1/20/16 3 Theorem1.4. Supposeallpartialderivativesof f existataandarecontinuousonaneighborhoodofa;then, f is differentiableata. In calculus, one can formulate several “guiding” ideas, e.g. the whole change is the sum of the individual changes,thewholeisthe(possiblyinfinite)sumoftheparts,andsoforth. Oneparticularoneis: onevariableata time. Thisprinciplewillguidetheproofofthistheorem. Proof. Theproofwillbegivenform=2andn=1,butyoucanfigureoutthesmalldetailsneededtogeneralize it;forlargern,justrepeattheargumentforeachcomponent. Wewanttocompute f(a +h ,a +h )−f(a ,a ) 1 1 2 2 1 2 = f(a +h ,a +h )−f(a +h ,a )+f(a +h ,a )−f(a ,a ) 1 1 2 2 1 1 2 1 1 2 1 2 Regrouping,thisistwosingle-variablequestions. Inparticular,wecanapplythemeanvaluetheorem: thereexist c ,c ∈(cid:82)suchthat 1 2 = ∂ f (cid:12)(cid:12)(cid:12) h + ∂ f (cid:12)(cid:12)(cid:12) h ∂x2(cid:12) 2 ∂x1(cid:12) 1 (a1+h1,a2+c2) (a1+c1,a2) =(cid:130) ∂ f (cid:12)(cid:12)(cid:12) − ∂ f (cid:12)(cid:12)(cid:12) (cid:140)h +(cid:130) ∂ f (cid:12)(cid:12)(cid:12) − ∂ f (cid:12)(cid:12)(cid:12) (cid:140)h +(cid:18) ∂ f (cid:12)(cid:12)(cid:12) , ∂ f (cid:12)(cid:12)(cid:12) (cid:19)(cid:129)h1(cid:139), ∂x1(cid:12)a1+c1,a2 ∂x1(cid:12)a 1 ∂x2(cid:12)a1+h1,a2+c2 ∂x2(cid:12)a 2 ∂x1(cid:12)a ∂x2(cid:12)a h2 butsincethepartialsarecontinuous,thelefttwotermsgoto0,andsincethelasttermislinear,itgoesto0as h→0. (cid:130) We’lloftentalkaboutsmoothfunctionsinthisclass,whicharefunctionsforwhichallhigher-orderderivatives existandarecontinuous. Thus,theydon’thavetheproblemsthatonecounterexamplehad. B·C Sincewe’regoingtobemakinglinearapproximationstomaps,thenweshoulddiscusswhathappenswhen youperturblinearmapsalittlebit. Recallthatif L:(cid:82)n→(cid:82)m islinear,thenitsimageIm(L)⊂(cid:82)m anditskernel ker(L)⊂(cid:82)n. Supposen≤m;then, L issaidtohavefullrankifrankL=n. Thisisanopencondition: everyfull-ranklinear functioncanbeperturbedalittlebitandstaylinear. Thiswillbeveryuseful: ifa(possiblynonlinear)function’s differentialhasfullrank,thenonecansaysomeinterestingthingsaboutit. If n≥m,thenfullrankmeansrank m. Thisisonceagainstable(anopencondition): onecanwritesucha linearmapas L=(A|B),whereAisaninvertiblem×mmatrix,andinvertibilityisanopencondition(sinceit’s givenbythedeterminant,whichisacontinuousfunction). To actually figure out whether a linear map has full rank, write down its matrix and row-reduce it, using Gaussianelimination. Then,youcanreadoffabasisforthekernel,determiningthefreevariablesandtherelations determiningtheothervariables. Ingeneral,forak-dimensionalsubspaceof(cid:82)n,youcanpickkvariablesarbitrarily andtheseforcetheremainingn−kvariables. Thepointis: thesubspaceisthegraphofafunction. Now,wecanapplythistomoregeneralsmoothfunctions. Theorem1.5. Suppose f :(cid:82)n→(cid:82)m issmooth,a∈(cid:82)n,anddf| hasfullrank. a (1) (Inversefunctiontheorem)Ifn=m,thenthereisaneighborhoodU ofasuchthat f| isinvertible,witha U smoothinverse. (2) (Implicitfunctiontheorem)Ifn≥m,thereisaneighborhoodU ofasuchthatU∩f−1(f(a))isthegraph ofsomesmoothfunction g:(cid:82)n−m→(cid:82)m (uptopermutationofindices). (3) (Immersion theorem) If n≤ m, there’s a neighborhood U of a such that f(U) is the graph of a smooth g:(cid:82)n→(cid:82)m. Thistime,theresultsarelocalratherthanglobal,butonceagain,fullrankmeans(local)invertibilitywhen m=n,andmoregenerallymeansthatwecanwriteallthepointssentto f(a)(analogoustoakernel)asthe graphofasmoothfunction. It’spossibletosharpenthesetheoremsslightly: insteadofmaximalrank,youcanusethatifdf| hasblock a formwiththesquareblockinvertible,thensimilarstatementshold. 4 M382D(DifferentialTopology)LectureNotes Thecontentofthesetheorems,thewaytothinkofthem,isthatinthesecases,smoothfunctionslocallybehave likelinearones. Butthisisnottoomuchofasurprise: differentiabilitymeansexactlythatafunctioncanbelocally wellapproximatedbyalinearfunction. Thepointoftheproofisthatthehigher-ordertermsalsovanish. Forexample,ifm=n=1,thenfullrankmeansthederivativeisnonzeroata. Inthiscase,it’sincreasingor decreasinginaneighborhoodofa,andthereforeinvertible. Ontheotherhand,ifthederivativeis0,thenbad thingshappen,becauseit’scontrolledbythehigher-orderderivatives,soonecanhaveanoninvertiblefunction (e.g.aconstant)oraninvertiblefunctionwhoseinverseisn’tsmooth(e.g. y =x3 at x =0). Thisisnotthelasttimeinthisclassthatmaximalrankimpliesniceanalyticresults. We’regoingtoprove(2);then,aslinear-algebraiccorollaries,we’llrecovertheothertwo. Lecture2. The Contraction Mapping Theorem: 1/22/16 Today,we’regoingtoprovethegeneralizedinversefunctiontheorem,Theorem1.5. We’llstartwiththecase wherem=n,whichisalsothesimplestinthelinearcase(fullrankmeansinvertible,almosttautologically). Theorem2.1. Let f :(cid:82)n→(cid:82)n besmooth. Ifdf| isinvertible,then a (1) f isinvertibleonaneighborhoodofa, (2) f−1 issmoothonaneighborhoodofa,and (3) d(f−1)|f(a)=(df|a)−1. Proofofpart(1). Withoutlossofgenerality,wecanassumethata= f(a)=0bytranslating. Wecanalsoassume thatdf| =I,byprecomposingwithdf|−1: a a (cid:82)(cid:79)(cid:79)n f (cid:47)(cid:47)(cid:61)(cid:61)(cid:82)n df|−1 a (cid:82)n Ifweprovetheresultforthediagonalarrow,thenitisalsotruefor f. Sincethedomainandcodomainof f are differentinthisproof,we’regoingtocalltheformerX andthelatterY,so f :X →Y. Now,since f issmooth,itsderivativeiscontinuous,sothere’saneighborhoodofainX givenbythe x such that(cid:107)df| −I(cid:107)<1/2.1 Andbyshrinkingthisneighborhood,wecanassumethatitisaclosedballC. x OnC, f isinjective: if x ,x ∈C,thensinceC isconvex,thenthere’salineγ(t)=x +tv (where v=x −x ) 1 2 1 2 1 joining x1 to x2,and ddft =(df|γ(t))v. Therefore (cid:130)(cid:90) 1 (cid:140) f(x2)−f(x1)= df|γ(t)dt v 0 (cid:90) 1 = (cid:0)(df|γ(t)−I)+I(cid:1)vdt 0 (cid:90) 1 =x2−x1+ (df|γ(t)−I)vdt. 0 Wecanboundtheintegral: (cid:12) (cid:12) (cid:12)(cid:12)(cid:12)(cid:90) 1(cid:0)df|γ(t)−I(cid:1)v(cid:12)(cid:12)(cid:12)≤(cid:90) 1(cid:12)(cid:12)(df|γ(t)−I)v(cid:12)(cid:12)dt≤(cid:90) 1 21|v|dt= |2v|. (cid:12) 0 (cid:12) 0 0 Thus,since x −x =v,then f(x )−f(x )hasmagnitudeatleast v/2,soinparticularitcan’tbezero. Thus, f is 2 1 2 1 injectiveonC. Thepointis,sincedf isclosetotheidentityonC,wegetanerrortermthatwecanmakesmall. 1Therearemanydifferentnormsonthespaceofn×nmatrices,butsincethisisafinite-dimensionalvectorspace,theyareallequivalent. However,forthisproofwe’regoingtotaketheoperatornorm(cid:107)A(cid:107)= sup |Av|. v∈Sn−1 2 TheContractionMappingTheorem: 1/22/16 5 Toconstructaninverse,weneedtomakeitsurjectiveonaneighborhoodof f(a)inY. Thewaytodothisis calledthecontractionmappingprinciple,butwe’lldoitbyhandfornowandrecoverthegeneralprinciplelater. To be precise, we’ll iterate with a “poor-man’s Newton’s method:” if y ∈ Y, then given xn, let xn+1 = x0− (f(x )− y)= y+x − f(x )(sincewe’reusingthederivativeattheorigininsteadofat x,andthisisjustthe 0 0 0 identity). Afixedpointofthisiterationisapreimageof y. Specifically,we’llwant x =a,sincewe’retryingto 0 boundthedistanceofourfixedpointfroma. Since xn+1−xn= y+xn−f(xn)−(y+xn−1−f(xn−1))=(xn−xn−1)−(f(xn)−f(xn−1)), then|xn+1−xn|<(1/2)|xn−xn−1|,soinparticular,thisisaCauchysequence! Thus,itmustconverge,andtoa valuewithmagnitudenomorethan2|y|(since f(x )= f(a)=0). Thus,ifC hasradiusR,thenforany y inthe 0 ballofradius1/2fromtheorigin(inY), y hasapreimage x,so f issurjectiveonthisneighborhood. (cid:130) Now,wecandiscussthecontractionmappingprinciplemoregenerally. Definition2.2. LetX beacompletemetricspaceand T :X →X beacontinuousmapsuchthatd(T(x),T(y))≤ cd(x,y)forall x,y ∈X andsomec∈[0,1). Then, T iscalledacontractionmapping. Theorem2.3(Contractionmappingprinciple). IfX isacompletemetricspaceand T acontractionmappingonX, thenthere’sauniquefixedpoint x (i.e. T(x)=x). Proof. Uniquenessisprettysimple: if T hastwofixedpoints x and x(cid:48) suchthat x (cid:54)= x(cid:48),then d(T(x),T(x(cid:48)))≤ cd(x,x(cid:48))=d(T(x),T(x(cid:48))),andc<1,sothisisacontradiction,so x =x(cid:48). Existenceisbasicallytheproofwejustsaw: pickanarbitrary x0∈X andlet xn+1=T(xn). Then,d(xm,xn)≤ c|n−m−1|d(xn,xn−1),sothissequenceisCauchy,andhasalimit x. Then,since T iscontinuous, T(x)=x. (cid:130) Now,backtothetheorem. ProofofTheorem2.1,part(2). Onceagain,weassume f(0)=0. Bythefundamentaltheoremofcalculus,onour neighborhoodof0, (cid:90) 1 y = f(x)= df| (x)dt. tx 0 Sinceweassumeddf| =I,and f issmooth,thendf iscontinuous,soforany(cid:34)>0,there’saneighborhoodU of 0 0suchthatforall x ∈U,df| =I+A,where(cid:107)A(cid:107)<(cid:34). Whenweintegratethis,thismeans y =x+o(|x|): df is x “smallin x.” Hence,|x|−(cid:34)<|y|<|x|+(cid:34),sosinceU isbounded,thisputsaboundon x intermsof y,too;in otherwords, x = y+o(|y|)(thisislittle-o,becausewecandothisforany(cid:34)>0,thoughtheneighborhoodmay change). Thisisexactlywhatitmeansfor f−1 tobedifferentiableat y = f(0),anditsderivativeistheidentity! In general,ifdf|0(cid:54)=I,butisstillinvertible,thenwegetthatdf−1|f(0)=(df|0)−1. We’dlikethistoextendtoaneighborhoodoftheorigin. Sincedf| isinvertible,anddf iscontinuous,then 0 locallyaneighborhoodof0correspondstoaneighborhoodofdf| inthespaceofn×nmatrices,andviceversa. 0 Butthesetofinvertiblematricesisopeninthespaceofmatrices,sothere’saneighborhoodV of0suchthatdf| x isinvertibleforall x ∈V,soforeach x ∈V,df−1|f(x)=(df|x)−1. Then,matrixinversionisacontinuousfunction onthesubspaceofinvertiblematrices,sothismeansdf−1 iscontinuousinaneighborhoodof f(0). Thisgivesusonederivative;wewantedinfinitelymany. Usingthechainrule, ∂(df−1) ∂(df)−1 ∂x = , ∂ y ∂x ∂ y and ∂x = (df)−1. So we want to understand derivatives of matrices. Let Abe some invertible matrix-valued ∂y function,sothatAA−1=I. Thus,usingtheproductrule,A(cid:48)A−1=A(A−1)(cid:48)=0,sorearranging,(A−1)(cid:48)=A−1A(cid:48)A−1. Thatis,thederivativeinversecanbespecifiedintermsoftheinverseandthederivativeofA. Inparticular,this means ∂(df−1) isaproductofcontinuousfunctions(∂(df) and(df)−1),soitiscontinuous. Bythesameargument, ∂y ∂x soisthepartialderivativeinthe x-direction,sobyTheorem1.4,df−1 isdifferentiable. Thiscanberepeatedasan inductiveargumenttoshowthatdf−1 isdifferentiableasmanytimesasdf is,andbysmoothness,thisisinfinitely often. (cid:130) WecanusethistorecovertherestofTheorem1.5ascorollaries. 6 M382D(DifferentialTopology)LectureNotes ProofofTheorem1.5,part(2). First, for the implicit function theorem, let n> m and f :(cid:82)n →(cid:82)m be smooth withfullrank,andchooseabasisinwhichdf| =(A|B)inblockform,whereAisaninvertiblem×mmatrix. a Thetheoremstatementisthatwecanwritethefirst mcoordinatesasafunctionofthelast n−mcoordinates: specifically,thatthereexistsaneighborhood U of a suchthat U∩ f−1(f(a))=U∩{g(y),y}forsomesmooth g:(cid:82)n−m→(cid:82)m.2 Now,theproof. Let x ∈(cid:82)m and y ∈(cid:82)n−m,andlet (cid:129)x(cid:139) (cid:129)f(x,y)(cid:139) F = . y y Hence, (cid:18) (cid:19) A B dF| = . a 0 I Thisisinvertible,sinceAis: det(dF| )=det(A)(cid:54)=0. Thus,weapplytheinversefunctiontheoremtoF toconclude a thatasmooth F−1 exists,andsoifπ denotesprojectionontothefirstcomponent, x =π ◦F−1(0,y)=g(y). (cid:130) 1 1 Lecture3. Manifolds: 1/25/16 “Eraseanynotesyouhaveofthelasteightminutes! Butthefirst40minuteswereokay.” Recallthatwe’vebeendiscussionTheorem1.5,acollectionofresultscalledtheinversefunctiontheorem,the implicitfunctiontheorem,andtheimmersiontheorem. Thesearelocal(notglobal)results,andgeneralizesimilar resultsforlinearmaps: notallmatricesaresquare,butifamatrixhasfullrank,itcanbewrittenintwoblocks, oneofwhichisinvertible. Usingthiswithdf| asourmatrixistheideabehindprovingTheorem1.5: thefirst a severalvariablesdeterminetheremainingvariables. However,wedon’tknowwhichvariablestheyare: youmayhavetopermute x ,...,x togetthelastvariables 1 n assmoothfunctionsofthefirstones. Forexample,foracircle,thetangentlineishorizontalsometimes(sowe can’talwaysparameterizeintermsof x )andverticalatothertimes(sowecan’tonlyuse x ). 2 1 Beforeweprovetheimmersiontheorem(part(3)ofTheorem1.5),let’srecallwhattoolsweusetotalkabout curvesintheplane. (1) Acommontechniqueisusingaparameterizedcurve,theimageofasmoothγ(t):(cid:82)→(cid:82)2whosederivative isneverzero(toavoidsingularities). Forexample, f(t)=(t2,t3)hasazeroattheorigin,butthecurve oneobtainsis y =±x3/2,whichhasacuspat(0,0). Thisisthecontentoftheimmersiontheorem. (2) Anotherwaytodescribecurvesisaslevelsets: f(x,y)=c,mostfamouslythecircle. Thisisthecontent oftheimplicitfunctiontheorem: thislookslikeagraph-likecurvelocally. (3) Thisbringsustothemostsimplemethod: graphsoffunctions,justlikeincalculus. AndthepointofTheorem1.5isthatthesethreeapproachesgiveyouthesamesets,uptopermutationofvariables (andthatacurveisthegraphofafunctiononlylocally). Wehavethesethreepicturesofwhathigher-dimensional surfaceslooklike. Andthatmeansthatwhenwetalkaboutmanifolds,whicharetheanalogueofhigher-dimensionalsurfaces,we shouldkeepthesethingsinmind: amanifoldmaybedefinedabstractly,butweunderstandmanifoldsthrough thesethreevisualizations. ProofofTheorem1.5,part(3). We’regoingtoprovetheequivalentstatementthatifthefirstnrowsofdf| are a linearlyindependent,thentheremainingm−nvariablesaresmoothfunctionsinthefirstn. 2Forexample,ifn=2andm=1,consider f(x)=|x|2−1,anda=(cosθ,sinθ). Then, f−1(f(a))istheunitcircle,sotheimplicit functionistellingusthatlocally,thecircleisafunctionofx intermsofx ,orviceversa. 1 2 4 Manifolds: 1/25/16 7 Since f : (cid:82)n → (cid:82)m, then let π denote projection onto the first n coordinates, so we have a commutative 1 diagram (cid:82)n f (cid:47)(cid:47)(cid:82)m π π ◦f (cid:33)(cid:33) (cid:15)(cid:15) 1 1 (cid:82)n. Inblockform,df| =(cid:0)A(cid:1),whereAisinvertible,andtherefored(π ◦ f)| =A. Thisisinvertible,so(π ◦ f)−1 a B 1 a 1 hasaninverseinaneighborhoodofa,bytheinversefunctiontheorem. Thus,ifπ denotesprojectionontothe 2 last m−ncoordinates,then g =π ◦ f ◦(π ◦ f)−1 writesthelast m−ncoordinatesintermsofthefirst n,as 2 1 desired. (cid:130) Now,we’rereadytotalkaboutsmoothmanifolds. Definition3.1. Ak-manifoldX in(cid:82)n isasetthatlocallylookslikeoneofthedescriptions(1),(2),or(3)fora smoothsurface. Thatis,itsatisfiesoneofthefollowingdescriptions. (1) Forevery p∈X,there’saneighborhoodU of pwhereonecanwriteN−kvariablesinsmoothfunctions oftheremainingkvariables,i.e.thereisaneighborhoodV ⊂(cid:82)k andasmooth g:V →(cid:82)N−k suchthat X ∩U ={(x,g(x)):x ∈V}(uptopermutation). (2) X islocallytheimageofasmoothmap,i.e.forevery p∈X,there’saneighborhoodU of pandasmooth f :(cid:82)k →(cid:82)N with full rank such that the image of f in U is X ∩U. This is the “parameterized curve” analogue. (3) Locally,X isthelevelsetofasmoothmap f :(cid:82)N →(cid:82)N−k withfullrank. Ifkisunderstoodfromcontext(ornotimportant),X willalsobecalledamanifold. Thebigtheoremisthatthesethreeconditionsareequivalent,andthisfollowsdirectlyfromTheorem1.5. Forexample,supposewehavethegraphofasmoothfunction y =x2. Howcanwewritethisastheimageofa smoothmap? Well,(x,y)=(t,t2)hasnonzeroderivative,andwecandoexactlythesamething(locally)fora manifoldingeneral. Andit’sthelevelset f(x,y)=0,where f(x,y)= y−x2,andthesamethingworks(locally) formanifolds: forageneralgraphy= g(x),thisisthelevelsetof f(y,x)=y−g(x),whosederivativedf has blockmatrixform(I | −dg),whichhasfullrank. Neat. Andperhapsmostusefulfornow,somethingthat’slocallyagraphisreallyeasytovisualize: it’sthebedrockon whichonefirstdefinedcurvesandsurfaces. Now,that’samanifoldin(cid:82)n. AsfarasGuilleminandPollackareconcerned,that’stheonlykindofmanifold thereis,butwewanttotalkaboutabstractmanifolds,butthatmeanswe’llneedonemoreimportantproperty. SupposeX ⊂(cid:82)N isamanifold,and p∈X. We’regoingtolookataneighborhoodof pastheimageofasmooth g :(cid:82)k→(cid:82)N;thisisthemostcommonandmostfundamentaldescriptionofamanifold. However,thisisnotin 1 generalunique;suppose g :(cid:82)k→(cid:82)N landsinadifferentneighborhoodof p—though,byrestrictingtotheir 2 intersection,wecanassumewehavetwosmoothmaps(sometimescalledcharts)intothesameneighborhood, andtheybothhaveinverses,sowehaveawell-definedfunction g−1◦g :(cid:82)k→(cid:82)k. Isitsmooth? 2 1 Theorem3.2. g−1◦g issmooth. 2 1 Thekeyassumptionhereisthatdg anddg bothhavemaximalrank. 1 2 Definition3.3. ThetangentspacetoX at p,denoted TpX,isIm(dg1|g−1(p));itisak-dimensionalsubspaceof(cid:82)N. 1 Thisisthesetofvelocityvectorsofpathsthrough p,whichmakessense,becausesuchapathmustcomefroma pathdownstairsin(cid:82)k,since g islocallyinvertible. 1 Lemma3.4. Thetangentspaceisindependentofchoiceof g . 1 TheideaisthatanyvelocityvectormustcomefromapathinbothIm(dg1|g−1(p))andIm(dg2|g−1(p)),sothese 1 2 twoimagesarethesame. Then,we’llpunttheproofofTheorem3.2tonextlecture. 8 M382D(DifferentialTopology)LectureNotes Lecture4. Abstract Manifolds: 1/27/16 Lasttime,weweretalkingaboutchangeofvariables,butweweremissingalemmathat’simportantforthe proof,butnotreallytherightwaytoviewmanifolds. LetX beak-dimensionalmanifoldin(cid:82)n,soforanyp∈X,there’samapφfromtheneighborhoodoftheorigin in(cid:82)k toaneighborhoodof p in X,whereφ(0)=p anddφ| hasrank k. We’dlikealocalinversetoφ,which 0 we’llcall F;it’samapfromaneighborhoodof(cid:82)n toaneighborhoodof(cid:82)k. We’dlike F tobesmooth,andwe want F◦φ=id|(cid:82)k. Bypermutingcoordinates,wecanassumethatthefirstkrowsofdφ arelinearlyindependent. Thatis,dφ| 0 hasblockform(cid:0)A(cid:1),whereAisinvertible. Then,defineφ(cid:101):(cid:82)k×(cid:82)n−k→(cid:82)n sending(x,y)T→φ(x)+(0,y)T,3so B thatφ(cid:101)(x,0))=φ(x). φ andφ(cid:101)fitintothefollowingdiagram. (cid:82)k(cid:31)(cid:127) x(cid:55)→(x,0) (cid:47)(cid:47)(cid:82)n φ(cid:101) (cid:47)(cid:47)(cid:52)(cid:52)(cid:82)n φ Thus,bythechainrule, (cid:18) (cid:19) A 0 dφ(cid:101)|0= B I , sodφ(cid:101)|0 hasfullrank! Thus,inaneighborhoodof p,ithasaninverse,andcertainlytheinclusion(cid:82)k(cid:44)→(cid:82)n hasa leftinverseπ(projectionontothefirstkcoordinates),sowecanlet F =π◦φ(cid:101)−1,because F◦φ(x)=F◦φ(cid:101)(x,0)=π◦φ(cid:101)−1◦φ(cid:101)((x,0))=π(x,0)=x. Likewise,φ◦F =id| ,sinceeverypointinourneighborhoodisintheimageofφ. X Thisishowwetalkaboutsmoothnessonmanifolds: wedon’tknowwhatsmoothnessmeansonsomearbitrary submanifold,sowe’llusethefactthatwecanlocallypretendwe’rein(cid:82)n totalkaboutsmoothness. Supposeφ,ψ:(cid:82)k⇒X aretwosuchsmoothcoordinatemaps;we’dliketofindasmoothfunction g froma neighborhoodin(cid:82)k toaneighborhoodin(cid:82)k relatingthem(again,locally). Butwehavealocalinversetoψcalled F,sosincewewantψ=φ◦g,thendefine g=F◦ψ,becauseφ◦g=φ◦F◦ψ=ψ. And g isthecompositionof twosmoothfunctions,soit’ssmooth(thisisTheorem3.2). Thisisourchange-of-coordinatesoperation. Theorem4.1. Afunction g:X →(cid:82)m canbeextendedtoasmoothmapG onaneighborhoodof pin(cid:82)n iff g◦φ is smooth. Thisisanothernotionofsmooth: thefirstonedeterminessmoothnessbycoordinates,andthesecondsays thatsmoothfunctionsonasubmanifoldarerestrictionsofsmoothfunctions(cid:82)n→(cid:82)m. Butthetheoremsaysthat they’retotallyequivalent. Proof. SupposesuchasmoothextensionG exists;sinceG| =g andIm(φ)⊂X,thenG◦φ=g◦φ. G andφ are X smooth,soG◦φ=g◦φ issmooth. Conversely,if g◦φ issmooth,thenletG=g◦φ◦F,whichisasmoothmap(sinceit’sacompositionoftwo smoothfunctions)outofaneighborhoodof pin(cid:82)n. (cid:130) ThisextrinsicdefinitionistheoneGuilleminandPollackusethroughouttheirbook;theothernotiondoesn’t dependonanembeddinginto(cid:82)n,butwehadtocheckthatitwasindependentofchangeofcoordinates(which byTheorem3.2issmooth,sowe’reOK).Thismeanswecanmakethefollowingdefinition. Definition4.2. • Achart(cid:82)k→X foratopologicalspaceX isacontinuousmapthat’sahomeomorphismontoitsimage. • An(abstract)smoothk-manifoldisaHausdorffspaceX equippedwithchartsϕα:(cid:82)k→X suchthat (1) everypointinX isintheimageofsomechart,and 3φ(cid:101)ispronounced“phi-twiddle.” 5 AbstractManifolds: 1/27/16 9 (2) foreverypairofoverlappingchartsϕα andϕβ,thechange-of-coordinatesmapϕβ−1◦ϕα:(cid:82)k→(cid:82)k issmooth. Thedefinitionissometimeswrittenintermsofneighborhoodsin(cid:82)k,soeachchartisamap U →X,where U ⊂(cid:82)k,butthisiscompletelyequivalenttothegivendefinition,sincetan:(−π/2,π/2)→(cid:82)isadiffeomorphism (andtherearemanyothers,e.g.ex/(1+ex)). Thepointisthateverypointhasaneighborhoodhomeomorphicto (cid:82)k,evenifwethinkofneighborhoodsaslittleballsmuchofthetime. Therearelotsofdifferentcategoriesofmanifolds: aCn manifoldhasthesamedefinition,butwerequirethe change-of-coordinatesmapstomerelybeCn (ntimescontinuouslydifferentiable);ananalyticmanifoldrequires thechange-of-coordinatesmapstobeanalytic;andinthesamewayonecandefinecomplex-analyticmanifolds (holomorphicchange-of-coordinatesmaps)andalgebraicmanifolds. Foratopologicalmanifoldwejustrequirethe change-of-coordinatesmapstobecontinuous,whichisalwaystrueforacoveringofcharts. Butinthisclass,the degreeofregularitywecareaboutissmoothness. Definition 4.3. Let X be a manifold and f : X → (cid:82)n be continuous. Then, f is smooth if for every chart ϕα:(cid:82)k→X,thecomposition f ◦ϕα issmooth. Thisisjustlikethedefinitionofsmoothnessformanifoldslivingin(cid:82)n. Example4.4. LetX bethesetoflinesin(cid:82)2(notjustthesetoflinesthroughtheorigin). Thisisamanifold,butwe wanttoshowthis. Usingpoint-slopeform,wecandefineamapφ :(cid:82)2→X sending(a,b)(cid:55)→{(x,y): y =ax+b}, 1 whichcoversalllinesthataren’tvertical. Weneedtohandletheverticallineswithanotherchart,φ :(cid:82)2→X 2 sending(c,d)(cid:55)→x =cy+d. Thesechartsintersectforalllinesthatareneitherverticalnorhorizontal,sothechange-of-coordinatesmap describesc=1/aandd=−b/a,i.e. g(a)=(1/a,−b/a). Andsincewe’rerestrictedtonon-verticallines,a(cid:54)=0, sothisissmooth,and g−1(c,d)=(1/c,−d/c),whichisalsosmooth(sincewe’renotlookingathorizontallines). Thus,we’redescribedX asamanifold. It turns out that X is a Möbius band. A line may be described by a direction (an angle coordinate) and an offset(intersectionwiththe x-axis,headinginthespecifieddirection). However,therearetwodescriptions,given byflippingthedirection: (θ,D)∼(θ+π,−D). Thus,thisisthequotientofaninfinitelylongcylinderbyhalfa rotationandatwist,givingusaMöbiusband. Onethingwehaven’ttalkedmuchaboutis: whydomanifoldsneedtobeHausdorff? Thismakesourexample muchlessterrible: here’sjustonecreatureweavoidwiththiscondition. Example4.5(Linewithtwoorigins). Taketwocopiesof(cid:82)2,andidentify(x,1)∼(x,2)forall x (cid:54)=0. Thus,we seemtohaveonecopyof(cid:82),buttwodifferentcopiesoftheorigin. Thechartsareperfectlynice: anyintervalon eithercopyof(cid:82)isachartforthisspace,buteveryneighborhoodofoneoftheoriginscontainstheother,soitisn’t Hausdorff(itis T ,though). SeeFigure1fora(notperfectlyaccurate)depictionofthisspace. Wedon’twantto 1 • • FIGURE 1. Depiction of the line with two origins. Note, however, that the two origins are technicallyinfinitelyclosetogether. havespaceslikethisone,sowerequiremanifoldstobeHausdorff. TuneinFridaytolearnhowtodeterminewhentwomanifoldsareequivalent. Isthesamespacewithdifferent chartsadifferentmanifold? Lecture5. Examples of Manifolds and Tangent Vectors: 1/29/16 “Howdoyoumaketheunitdiscintoamanifold? Withpiecharts.” 10 M382D(DifferentialTopology)LectureNotes Today,we’regoingtomakethenotionofamanifoldmorefamiliarbygivingsomemoreexamplesofwhatstructures canarise: specifically,the2-sphereS2 andtheprojectivespaces(cid:82)(cid:80)n and(cid:67)(cid:80)n. Then,we’llmovetodiscussing tangentvectorsandhowtodefinesmoothmapsbetweenmanifolds. Example5.1(2-sphere). Theconcrete2-sphereisS2={x∈(cid:82)3:|x|2=1}. Whyisthisamanifold? FIGURE2. The2-sphere,anexampleofamanifold. (cid:112) Wecanputchartson(cid:112)thissurfaceasfollows: ifz>0,thenwehave(cid:112)achart(u,v, 1−u2−v2),andifz<0, thenthechartis(u,v,− 1−u2−v2). Similarly,if y >0,wehave(u, 1−u2−v2,v),andsimilarlyfor y <0 andfor x. However,since0(cid:54)∈S2,thenthiscoversallofS3,andonecancheckthatthetransitionmapsaresmooth andthechartmapshavefullrank. Anotherwaytorealizethisisthatif f :(cid:82)3→(cid:82)isdefinedby f(x,y,z)=x2+y2+z2,then f issmoothand S2= f−1(1). Thus,S2 isthelevelsetofasmoothfunctionwhosederivativedf =(2x,2y,2z)hasfullrank,soby theimplicitfunctiontheorem,itmustbeamanifold. Thatis,youcanseeS2 isamanifoldusingmapsintoit,ormapsoutofit. Example5.2(Realprojectivespace). (cid:82)(cid:80)n,realprojectivespace,isdefinedtobethesetoflinesthroughtheorigin in(cid:82)n+1. Anynonzeropointin(cid:82)n+1 definesalinethroughtheorigin,andscalingapointdoesn’tchangethisline. Thus,(cid:82)(cid:80)n={r∈(cid:82)n+1\0}/(r∼λrforλ∈(cid:82)\0). Wehavecoordinates(x ,...,x )for(cid:82)n+1,andwanttomake 0 n coordinateson(cid:82)(cid:80)n. ThesetU ={x:x (cid:54)=0}isopen,and(x ,x ,...,x )∼(1,x /x ,...,x /x )in(cid:82)(cid:80)n,sowegetachartonU . 0 0 0 1 n 1 0 n 0 0 We’re parameterizing non-horizontal lines by their slope (or, well, the reciprocal of it). Thus, we have a map ψ :(cid:82)n→(cid:82)(cid:80)n sending(x ,...,x )(cid:55)→[(1,x ,...,x )](wherebracketsdenotetheequivalenceclassin(cid:82)(cid:80)n). 0 1 n 1 n Wecandothiswitheverycoordinate: letψ :(cid:82)n→(cid:82)(cid:80)n send(x ,...,x )(cid:55)→[(x ,1,x ,...,x )],andsoforth. 1 1 n 1 2 n Then,sinceeverypointin(cid:82)(cid:80)n hasanonzerocoordinate,thenthiscovers(cid:82)(cid:80)n. Arethetransitionmapssmooth? (cid:82)(cid:80)2 willillustratehowitworks: if[1,a,b]=[c,1,d],thenc=1/aandd = b/a,whichissmooth(becausein thesecharts,aandc arenonzero). Bytheway,(cid:82)(cid:80)1 isjustacircle. Moregenerally,onecanalsorealize(cid:82)(cid:80)n astheunitspherewithoppositepoints identified(everyvectorcanbescaledtoaunitvector,butthenx∼−x). However,(cid:82)(cid:80)2,etc.,aremoreinteresting spaces. Example5.3(Complexprojectivespace). Wecanalsorefertocomplexprojectivespace,(cid:67)(cid:80)n. Theideaof“lines throughtheorigin”isthesame,but,despitewhatalgebraicgeometerscallit,aone-dimensionalcomplexsubspace looksalotmorelikea(real)planethanarealline. Inanycase,one-dimensionalcomplexsubspacesof(cid:67)n+1 are givenbynonzerovectors,sowedefine(cid:67)(cid:80)n ={r∈(cid:67)n+1\0}/(r∼λr,λ∈(cid:67)\0). Now,thesamedefinitionsof chartsgiveusψ :(cid:67)n→(cid:67)(cid:80)n,butsinceweknowhowtomap(cid:82)2n→(cid:67)n,thisworksjustfine. k Inthiscase,thefirstinterestingcomplexprojectivespaceis(cid:67)(cid:80)1. Ourtwochartsare[1,a]and[b,1],andtheir overlapiseverythingbutthetwopoints[1,0]and[0,1]. Inotherwords,everypointisoftheform[z,1]forsome z ∈(cid:67)or[1,0]: thatis[1,0]isa“pointatinfinity”∞,whosereciprocalis0! So(cid:67)(cid:80)1 isthecomplexnumbers plusoneextrapoint. WecanactuallyrealizethisasS2 usingamapcalledstereographicprojection: thespheresits inside(cid:82)3,andthe xy-planecanbeidentifiedwith(cid:67). Then,thelinebetweenthenorthpole(0,0,1)andagiven (u,v,0)(correspondingto[u+vi,0])intersectsthesphereatasinglepoint,whichisdefinedtobetheimageof theprojection(cid:67)(cid:80)1→S2. However,thepointatinfinityisn’tidentifiedinthisway,andneitheristhenorthpole;

Description:
M382D NOTES: DIFFERENTIAL TOPOLOGY ARUN DEBRAY MAY 16, 2016 These notes were taken in UT Austin’s Math 382D (Differential Topology) class in Spring 2016, taught by
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.