ebook img

Approximation Theory XIII: San Antonio 2010 PDF

419 Pages·2012·4.321 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation Theory XIII: San Antonio 2010

Springer Proceedings in Mathematics Volume 13 Forfurthervolumes: http://www.springer.com/series/8806 Springer Proceedings in Mathematics This book series features volumes of selected contributions from workshops and conferencesinallareasofcurrentresearchactivityinmathematics.Afteranoverall evaluation,atthehandsofthepublisher,oftheinterest,scientificquality,andtime- linessofeachproposal,everyindividualcontributionhasbeenrefereedtostandards comparabletothoseofleadingmathematicsjournals.Thisseriesthuspresentstothe researchcommunitywell-editedandauthoritativereportsonnewestdevelopments inthemostinterestingandpromisingareasofmathematicalresearchtoday. Marian Neamtu • Larry Schumaker Editors Approximation Theory XIII: San Antonio 2010 123 Editors MarianNeamtu LarrySchumaker CenterforConstructiveApproximation CenterforConstructiveApproximation DepartmentofMathematics DepartmentofMathematics VanderbiltUniversity VanderbiltUniversity Nashville,TN37240 Nashville,TN37240 USA USA [email protected] [email protected] ISSN2190-5614 e-ISSN2190-5622 ISBN978-1-4614-0771-3 e-ISBN978-1-4614-0772-0 DOI10.1007/978-1-4614-0772-0 SpringerNewYorkDordrechtHeidelbergLondon MathematicsSubjectClassification(2010):41Axx,65Dxx (cid:2)c SpringerScience+BusinessMedia,LLC2012. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY10013, USA),except forbrief excerpts inconnection with reviews orscholarly analysis. Usein connectionwithanyformofinformationstorageandretrieval,electronicadaptation,computersoftware, orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface These proceedings were prepared in connection with the international confer- ence Approximation Theory XIII, which was held during March 7–10, 2010 in San Antonio, Texas. The conference was the thirteenth in a series of meetings in ApproximationTheory held at variouslocations in the United States, and was at- tendedby144participants.PreviousconferencesintheserieswereheldinAustin, Texas(1973,1976,1980,1992);CollegeStation,Texas(1983,1986,1989,1995); Nashville, Tennessee (1998), St. Louis, Missouri (2001); Gatlinburg, Tennessee (2004);andSanAntonio,Texas(2007). Weareparticularlyindebtedtoourplenaryspeakers:AlbertCohen(Paris),Oleg Davydov(Strathclyde),GregoryFasshauer(IllinoisInstituteofTechnology),Anne Gibert (University of Michigan), Bin Han (University of Alberta), Kirill Kopotun (UniversityofManitoba),andVilmosTotik(UniversityofSouthFlorida),whopro- vided inspiring talks and set a high standard of expositionin their descriptionsof newdirectionsforresearch.Theconferencealsoprovidedaforumfortheawarding of the PopovPrize in ApproximationTheory.The sixth Vasil A. PopovPrize was awardedtoJoelA.Tropp(CalTech),whoalsopresentedaplenarylecture.Thanks are also due to the presenters of contributed papers, as well as everyone who at- tended,formakingtheconferenceasuccess. WeareespeciallygratefultotheNationalScienceFoundationforfinancialsup- port, and also to the Department of Mathematics at Vanderbilt University for its logisticalsupport. Wewouldalsoliketoexpressoursinceregratitudetothereviewerswhohelped selectarticlesforinclusioninthisproceedingsvolume,andalsofortheirsuggestions totheauthorsforimprovingtheirpapers. Nashville,TN MarianNeamtu LarryL.Schumaker v Contents An Asymptotic Equivalence Between Two Frame Perturbation Theorems ...................................................... 1 B.A.Bailey 1 ThePerturbationTheorems................................. 1 2 AnAsymptoticEquivalence ................................ 3 References..................................................... 7 GrowthBehaviorandZero Distribution ofMaximally Convergent RationalApproximants .......................................... 9 Hans-PeterBlatt,Rene´ Grothmann,andRalitzaK.Kovacheva References..................................................... 15 GeneralizationofPolynomialInterpolationatChebyshevNodes ........ 17 DebaoChen 1 Introduction.............................................. 17 2 GeneralizationofChebyshevNodes.......................... 21 3 LebesgueFunctions ....................................... 23 4 PropertiesofPairsofAuxiliaryFunctions..................... 30 5 OptimalNodesforLagrangePolynomialInterpolation .......... 32 References..................................................... 35 Green’sFunctions:Taking AnotherLookatKernelApproximation, RadialBasisFunctions,andSplines ................................ 37 GregoryE. Fasshauer 1 Introduction.............................................. 37 2 TowardanIntuitiveInterpretationofNativeSpaces............. 39 2.1 WhatistheCurrentSituation?....................... 39 2.2 Mercer’sTheoremandEigenvalueProblems........... 41 2.3 Green’sFunctionsandEigenfunctionExpansions....... 42 2.4 GeneralizedSobolevSpaces ........................ 45 3 FlatLimits............................................... 48 3.1 InfinitelySmoothRBFs ............................ 49 vii viii Contents 3.2 FinitelySmoothRBFs ............................. 50 4 StableComputation ....................................... 53 4.1 AnEigenfunctionExpansionforGaussians............ 53 4.2 TheRBF-QRAlgorithm............................ 54 5 DimensionIndependentErrorBounds........................ 57 5.1 TheCurrentSituation .............................. 57 5.2 NewResultson(Minimal)Worst-CaseWeightedL 2 Error ............................................ 58 6 Summary ................................................ 60 References..................................................... 61 Sparse Recovery Algorithms: Sufficient Conditions in Terms ofRestrictedIsometryConstants .................................. 65 SimonFoucart 1 Introduction.............................................. 65 1.1 BasisPursuit ..................................... 66 1.2 IterativeHardThresholding......................... 66 1.3 CompressiveSamplingMatchingPursuit.............. 66 2 RestrictedIsometryConstants............................... 66 3 BasisPursuit ............................................. 69 4 IterativeHardThresholding................................. 72 5 CompressiveSamplingMatchingPursuit ..................... 74 References..................................................... 77 LagrangeInterpolationandNewAsymptoticFormulaefortheRiemann ZetaFunction .................................................. 79 MichaelI.Ganzburg 1 Introduction.............................................. 79 2 LagrangeInterpolation..................................... 80 3 AsymptoticBehavioroftheInterpolationError ................ 83 4 AsymptoticFormulaeforζ(s) .............................. 86 5 L (−1,1)-AsymptoticsandCriteriaforζ(s)=0andζ(s)(cid:2)=0 ... 89 p 6 Remarks................................................. 92 References..................................................... 92 ActiveGeometricWavelets ....................................... 95 ItaiGershtanskyandShaiDekel 1 Introduction.............................................. 95 2 TheoreticalBackground.................................... 98 2.1 A Jackson Estimate for Piecewise Polynomial ApproximationUsingNon-convexDomains........... 98 2.2 AdaptiveLocalSelectionoftheWeightμ .............100 3 OverviewoftheAGWAlgorithm............................103 4 ExperimentalResults ......................................108 References.....................................................109 Contents ix InterpolatingCompositeSystems .................................. 111 PhilippGrohs 1 Introduction..............................................111 2 CompositeDilationSystems ................................112 3 InterpolatingSystems......................................114 4 Shearlets ................................................118 5 Conclusion...............................................120 References.....................................................120 WaveletsandFrameletsWithintheFrameworkofNonhomogeneous WaveletSystems ................................................ 121 BinHan 1 Introduction..............................................121 2 NonhomogeneousWaveletSystemsinL (Rd) .................125 2 3 Frequency-Based Nonhomogeneous Dual Framelets intheDistributionSpace ...................................132 4 WaveletsandFrameletsinFunctionSpaces ...................140 5 WaveletsandFrameletsDerivedfromFilterBanks .............145 6 DiscreteFrameletTransformandItsBasicProperties ...........149 7 DirectionalTightFrameletsinL (Rd)andProjectionMethod....154 2 References.....................................................158 CompactlySupportedShearlets ................................... 163 GittaKutyniok,JakobLemvig,andWang-QLim 1 Introduction..............................................164 1.1 DirectionalRepresentationSystems ..................165 1.2 AnisotropicFeatures, Discrete Shearlet Systems, andQuestforSparseApproximations.................166 1.3 ContinuousShearletSystems........................167 1.4 Applications......................................168 1.5 Outline ..........................................170 2 2DShearlets .............................................171 2.1 Preliminaries .....................................171 2.2 ClassicalConstruction .............................172 2.3 ConstructingCompactlySupportedShearlets ..........173 3 SparseApproximations ....................................175 3.1 Cartoon-likeImageModel..........................175 3.2 OptimallySparseApproximationofCartoon-like Images ..........................................176 4 Shearletsin3DandBeyond ................................177 4.1 Pyramid-AdaptedShearletSystems ..................178 4.2 SparseApproximationsof3DData...................181 5 Conclusions..............................................184 References.....................................................184 x Contents ShearletsonBoundedDomains.................................... 187 GittaKutyniokandWang-QLim 1 Introduction..............................................187 1.1 OptimallySparseApproximationsofCartoon-like Images ..........................................188 1.2 ShortcomingsofthisCartoon-likeModelClass ........189 1.3 OurModelforCartoon-likeImagesonBounded Domains.........................................189 1.4 ReviewofShearlets................................191 1.5 SurprisingResult..................................191 1.6 MainContributions................................192 1.7 Outline ..........................................193 2 CompactlySupportedShearlets .............................193 2.1 CompactlySupportedShearletFramesforL2(R2) ......193 2.2 CompactlySupportedShearletFramesforL2(Ω ).......195 3 OptimalSparsityofShearletsonBoundedDomains ............196 3.1 MainTheorem1 ..................................196 3.2 ArchitectureoftheProofofTheorem1 ...............197 4 ProofofTheorem1 .......................................198 4.1 Case1:TheSmoothPart ...........................198 4.2 Case2:TheNon-SmoothPart .......................199 5 Discussion ...............................................205 References.....................................................206 On Christoffel Functions and Related Quantities for Compactly SupportedMeasures............................................. 207 D.S.Lubinsky 1 Introduction..............................................207 2 ProofofTheorem6 .......................................214 References.....................................................219 Exact Solutions of Some Extremal Problems ofApproximationTheory......................................... 221 A.L.Lukashov 1 Introduction..............................................221 2 Proofs...................................................223 References.....................................................228 A LagrangeInterpolationMethodby Trivariate CubicC1 Splines ofLowLocality ................................................. 231 G.Nu¨rnbergerandG.Schneider 1 Introduction..............................................231 2 Preliminaries.............................................232 3 AUniformPartitionConsistingofTetrahedraandOctahedra.....235 4 A(Partial)Worsey–FarinRefinementof♦ ....................239

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.